Abstract Seismic faults are surrounded by damaged rocks with reduced rigidity and enhanced attenuation. These damaged fault zone structures can amplify seismic waves and affect earthquake dynamics, yet they are typically omitted in physics‐based regional ground motion simulations. We report on the significant effects of a shallow, flower‐shaped fault zone in foreshock‐mainshock 3D dynamic rupture models of the 2019 Ridgecrest earthquake sequence. We find that the fault zone structure both amplifies and reduces ground motions not only locally but at distances exceeding 100 km. This impact on ground motions is frequency‐ and magnitude‐dependent, particularly affecting higher frequency ground motions from the foreshock because its corner frequency is closer to the fault zone's fundamental eigenfrequency. Within the fault zone, the shallow transition to a velocity‐strengthening frictional regime leads to a depth‐dependent peak slip rate increase of up to 70% and confines fault zone‐induced supershear transitions mostly to the fault zone's velocity‐weakening roots. However, the interplay of fault zone waves, free surface reflections, and rupture directivity can generate localized supershear rupture, even in narrow velocity‐strengthening regions, which are typically thought to inhibit supershear rupture. This study demonstrates that shallow fault zone structures may significantly affect intermediate‐ and far‐field ground motions and cause localized supershear rupture penetrating into velocity‐strengthening regions, with important implications for seismic hazard assessment.
more »
« less
Imaging the Garlock Fault Zone With a Fiber: A Limited Damage Zone and Hidden Bimaterial Contrast
Abstract The structure of fault zones and the ruptures they host are inextricably linked. Fault zones are narrow, which has made imaging their structure at seismogenic depths a persistent problem. Fiber‐optic seismology allows for low‐maintenance, long‐term deployments of dense seismic arrays, which present new opportunities to address this problem. We use a fiber array that crosses the Garlock Fault to explore its structure. With a multifaceted imaging approach, we peel back the shallow structure around the fault to see how the fault changes with depth in the crust. We first generate a shallow velocity model across the fault with a joint inversion of active source and ambient noise data. Subsequently, we investigate the fault at deeper depths using travel‐time observations from local earthquakes. By comparing the shallow velocity model and the earthquake travel‐time observations, we find that the fault's low‐velocity zone below the top few hundred meters is at most unexpectedly narrow, potentially indicating fault zone healing. Using differential travel‐time measurements from earthquake pairs, we resolve a sharp bimaterial contrast at depth that suggests preferred westward rupture directivity.
more »
« less
- Award ID(s):
- 1848166
- PAR ID:
- 10601301
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 129
- Issue:
- 7
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fault zone structures at many scales largely dictate earthquake ruptures and are controlled by the geologic setting and slip history. Characterizations of these structures at diverse scales inform better understandings of earthquake hazards and earthquake phenomenology. However, characterizing fault zones at sub‐kilometer scales has historically been challenging, and these challenges are exacerbated in urban areas, where locating and characterizing faults is critical for hazard assessment. We present a new procedure for characterizing fault zones at sub‐kilometer scales using distributed acoustic sensing (DAS). This technique involves the backprojection of the DAS‐measured scattered wavefield generated by natural earthquakes. This framework provides a measure of the strength of scattering along a DAS array and thus constrains the positions and properties of local scatterers. The high spatial sampling of DAS arrays makes possible the resolution of these scatterers at the scale of tens of meters over distances of kilometers. We test this methodology using a DAS array in Ridgecrest, CA which recorded much of the 2019 Mw7.1 Ridgecrest earthquake aftershock sequence. We show that peaks in scattering along the DAS array are spatially correlated with mapped faults in the region and that the strength of scattering is frequency‐dependent. We present a model of these scatterers as shallow, low‐velocity zones that is consistent with how we may expect faults to perturb the local velocity structure. We show that the fault zone geometry can be constrained by comparing our observations with synthetic tests.more » « less
-
null (Ed.)The fault damage zone is a well-known structure of localized deformation around faults. Its material properties evolve over earthquake cycles due to coseismic damage accumulation and interseismic healing. We will present fully dynamic earthquake cycle simulations to show how the styles of earthquake nucleation and rupture propagation change as fault zone material properties vary temporally. First, we will focus on the influence of fault zone structural maturity quantified by near-fault seismic wave velocities in simulations. The simulations show that immature fault zones promote small and moderate subsurface earthquakes with irregular recurrence intervals, whereas mature fault zones host pulse-like earthquake rupture that can propagate to the surface, extend throughout the seismogenic zone, and occur at regular intervals. The interseismic healing in immature fault zones plays a key role in allowing the development of aseismic slip episodes including slow-slip events and creep, which can propagate into the seismogenic zone, and thus limit the sizes of subsequent earthquakes by releasing fault stress. In the second part, we will discuss how the precursory changes of seismic wave velocities of fault damage zones may affect earthquake nucleation process. Both laboratory experiments and seismic observations show that the abrupt earthquake failure can be preceded by accelerated fault deformation and the accompanying velocity reduction of near-fault rocks. We will use earthquake cycle simulations to systematically test the effects of timing and amplitudes of such precursory velocity changes. Our simulations will provide new insights into the interplay between fault zone structure and earthquake nucleation process, which can be used to guide future real-time monitoring of major fault zones.more » « less
-
Faults are usually surrounded by damage zones associated with localized deformation. Here we use fully dynamic earthquake cycle simulations to quantify the behaviors of earthquakes in fault damage zones. We show that fault damage zones can make a significant contribution to the spatial and temporal seismicity distribution. Fault stress heterogeneities generated by fault zone waves persist over multiple earthquake cycles that, in turn, produce small earthquakes that are absent in homogeneous simulations with the same friction conditions. Shallow fault zones can produce a bimodal depth distribution of earthquakes with clustering of seismicity at both shallower and deeper depths. Fault zone healing during the interseismic period also promotes the penetration of aseismic slip into the locked region and reduces the sizes of fault asperities that host earthquakes. Hence, small and moderate subsurface earthquakes with irregular recurrence intervals are commonly observed in immature fault zone simulations with interseismic healing. To link our simulation results to geological observations, we will use simulated fault slip at different depths to infer the timing and recurrence intervals of earthquakes and discuss how such measurements can affect our understanding of earthquake behaviors. We will also show that the maturity and material properties of fault damage zones have strong influence on whether long-term earthquake characteristics are represented by single events.more » « less
-
null (Ed.)Abstract We image the shallow structure across the East Bench segment of the Wasatch fault system in Salt Lake City using ambient noise recorded by a month-long temporary linear seismic array of 32 stations. We first extract Rayleigh-wave signals between 0.4 and 1.1 s period using noise cross correlation. We then apply double beamforming to enhance coherent cross-correlation signals and at the same time measure frequency-dependent phase velocities across the array. For each location, based on available dispersion measurements, we perform an uncertainty-weighted least-squares inversion to obtain a 1D VS model from the surface to 400 m depth. We put all piece-wise continuous 1D models together to construct the final 2D VS model. The model reveals high velocities to the east of the Pleistocene Lake Bonneville shoreline reflecting thinner sediments and low velocities particularly in the top 200 m to the west corresponding to the Salt Lake basin sediments. In addition, there is an ∼400-m-wide low-velocity zone that narrows with depth adjacent to the surface trace of the East Bench fault, which we interpret as a fault-related damage zone. The damage zone is asymmetric, wider on the hanging wall (western) side and with greater velocity reduction. These results provide important constraints on normal-fault earthquake mechanics, Wasatch fault earthquake behavior, and urban seismic hazard in Salt Lake City.more » « less
An official website of the United States government

