skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symbolic types for lenient symbolic execution
We present lambda_sym, a typed λ-calculus forlenient symbolic execution, where some language constructs do not recognize symbolic values. Its type system, however, ensures safe behavior of all symbolic values in a program. Our calculus extends a base occurrence typing system with symbolic types and mutable state, making it a suitable model for both functional and imperative symbolically executed languages. Naively allowing mutation in this mixed setting introduces soundness issues, however, so we further addconcreteness polymorphism, which restores soundness without rejecting too many valid programs. To show that our calculus is a useful model for a real language, we implemented Typed Rosette, a typed extension of the solver-aided Rosette language. We evaluate Typed Rosette by porting a large code base, demonstrating that our type system accommodates a wide variety of symbolically executed programs.  more » « less
Award ID(s):
1651225
PAR ID:
10601698
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
2
Issue:
POPL
ISSN:
2475-1421
Format(s):
Medium: X Size: p. 1-29
Size(s):
p. 1-29
Sponsoring Org:
National Science Foundation
More Like this
  1. Reusable symbolic evaluators are a key building block of solver-aided verification and synthesis tools. A reusable evaluator reduces the semantics of all paths in a program to logical constraints, and a client tool uses these constraints to formulate a satisfiability query that is discharged with SAT or SMT solvers. The correctness of the evaluator is critical to the soundness of the tool and the domain properties it aims to guarantee. Yet so far, the trust in these evaluators has been based on an ad-hoc foundation of testing and manual reasoning. This paper presents the first formal framework for reasoning about the behavior of reusable symbolic evaluators. We develop a new symbolic semantics for these evaluators that incorporates state merging. Symbolic evaluators use state merging to avoid path explosion and generate compact encodings. To accommodate a wide range of implementations, our semantics is parameterized by a symbolic factory, which abstracts away the details of merging and creation of symbolic values. The semantics targets a rich language that extends Core Scheme with assumptions and assertions, and thus supports branching, loops, and (first-class) procedures. The semantics is designed to support reusability, by guaranteeing two key properties: legality of the generated symbolic states, and the reducibility of symbolic evaluation to concrete evaluation. Legality makes it simpler for client tools to formulate queries, and reducibility enables testing of client tools on concrete inputs. We use the Lean theorem prover to mechanize our symbolic semantics, prove that it is sound and complete with respect to the concrete semantics, and prove that it guarantees legality and reducibility. To demonstrate the generality of our semantics, we develop Leanette, a reference evaluator written in Lean, and Rosette 4, an optimized evaluator written in Racket. We prove Leanette correct with respect to the semantics, and validate Rosette 4 against Leanette via solver-aided differential testing. To demonstrate the practicality of our approach, we port 16 published verification and synthesis tools from Rosette 3 to Rosette 4. Rosette 3 is an existing reusable evaluator that implements the classic merging semantics, adopted from bounded model checking. Rosette 4 replaces the semantic core of Rosette 3 but keeps its optimized symbolic factory. Our results show that Rosette 4 matches the performance of Rosette 3 across a wide range of benchmarks, while providing a cleaner interface that simplifies the implementation of client tools. 
    more » « less
  2. In dependently-typed functional programming languages that allow general recursion, programs used as proofs must be evaluated to retain type soundness. As a result, programmers must make a trade-off between performance and safety. To address this problem, we propose System DE, an explicitly-typed, moded core calculus that supports termination tracking and equality reflection. Programmers can write inductive proofs about potentially diverging programs in a logical sublanguage and reflect those proofs to the type checker, while knowing that such proofs will be erased by the compiler before execution. A key feature of System DE is its use of modes for both termination and relevance tracking, which not only simplifies the design but also leaves it open for future extension. System DE is suitable for use in the Glasgow Haskell Compiler, but could serve as the basis for any general purpose dependently-typed language. 
    more » « less
  3. In type systems with dependency tracking, programmers can assign an ordered set of levels to computations and prevent information flow from high-level computations to the low-level ones. The key notion in such systems isindistinguishability: a definition of program equivalence that takes into account the parts of the program that an observer may depend on. In this paper, we investigate the use of dependency tracking in the context of dependently-typed languages. We present the Dependent Calculus of Indistinguishability (DCOI), a system that adopts indistinguishability as the definition of equality used by the type checker. DCOI also internalizes that relation as an observer-indexed propositional equality type, so that programmers may reason about indistinguishability within the language. Our design generalizes and extends prior systems that combine dependency tracking with dependent types and is the first to support conversion and propositional equality at arbitrary observer levels. We have proven type soundness and noninterference theorems for DCOI and have developed a prototype implementation of its type checker. 
    more » « less
  4. null (Ed.)
    This paper presents Solar, a system for automatic synthesis of adversarial contracts that exploit vulnerabilities in a victim smart contract. To make the synthesis tractable, we introduce a query language as well as summary-based symbolic evaluation, which sig- nificantly reduces the number of instructions that our synthesizer needs to evaluate symbolically, without compromising the preci- sion of the vulnerability query. We encoded common vulnerabilities of smart contracts and evaluated Solar on the entire data set from Etherscan. Our experiments demonstrate the benefits of summary- based symbolic evaluation and show that Solar outperforms state- of-the-art smart contracts analyzers, teether, Mythril, and Con- tractFuzzer, in terms of running time and precision. 
    more » « less
  5. Functional programs typically interact with stateful libraries that hide state behind typed abstractions. One particularly important class of applications are data structure implementations that rely on such libraries to provide a level of efficiency and scalability that may be otherwise difficult to achieve. However, because the specifications of the methods provided by these libraries are necessarily general and rarely specialized to the needs of any specific client, any required application-level invariants must often be expressed in terms of additional constraints on the (often) opaque state maintained by the library. In this paper, we consider the specification and verification of suchrepresentation invariantsusingsymbolic finite automata(SFA). We show that SFAs can be used to succinctly and precisely capture fine-grained temporal and data-dependent histories of interactions between functional clients and stateful libraries. To facilitate modular and compositional reasoning, we integrate SFAs into a refinement type system to qualify stateful computations resulting from such interactions. The particular instantiation we consider,Hoare Automata Types(HATs), allows us to both specify and automatically type-check the representation invariants of a datatype, even when its implementation depends on stateful library methods that operate over hidden state. We also develop a new bidirectional type checking algorithm that implements an efficient subtyping inclusion check over HATs, enabling their translation into a form amenable for SMT-based automated verification. We present extensive experimental results on an implementation of this algorithm that demonstrates the feasibility of type-checking complex and sophisticated HAT-specified OCaml data structure implementations layered on top of stateful library APIs. 
    more » « less