skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formally verified speculation and deoptimization in a JIT compiler
Just-in-time compilers for dynamic languages routinely generate code under assumptions that may be invalidated at run-time, this allows for specialization of program code to the common case in order to avoid unnecessary overheads due to uncommon cases. This form of software speculation requires support for deoptimization when some of the assumptions fail to hold. This paper presents a model just-in-time compiler with an intermediate representation that explicits the synchronization points used for deoptimization and the assumptions made by the compiler's speculation. We also present several common compiler optimizations that can leverage speculation to generate improved code. The optimizations are proved correct with the help of a proof assistant. While our work stops short of proving native code generation, we demonstrate how one could use the verified optimization to obtain significant speed ups in an end-to-end setting.  more » « less
Award ID(s):
1925644
PAR ID:
10601990
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
5
Issue:
POPL
ISSN:
2475-1421
Format(s):
Medium: X Size: p. 1-26
Size(s):
p. 1-26
Sponsoring Org:
National Science Foundation
More Like this
  1. In order to generate efficient code, dynamic language compilers often need information, such as dynamic types, not readily available in the program source. Leveraging a mixture of static and dynamic information, these compilers speculate on the missing information. Within one compilation unit, they specialize the generated code to the previously observed behaviors, betting that past is prologue. When speculation fails, the execution must jump back to unoptimized code. In this paper, we propose an approach to further the specialization, by disentangling classes of behaviors into separate optimization units. With contextual dispatch, functions are versioned and each version is compiled under different assumptions. When a function is invoked, the implementation dispatches to a version optimized under assumptions matching the dynamic context of the call. As a proof-of-concept, we describe a compiler for the R language which uses this approach. Our implementation is, on average, 1.7× faster than the GNU R reference implementation. We evaluate contextual dispatch on a set of benchmarks and measure additional speedup, on top of traditional speculation with deoptimization techniques. In this setting contextual dispatch improves the performance of 18 out of 46 programs in our benchmark suite. 
    more » « less
  2. null (Ed.)
    Many widely-deployed modern programming systems use just-in-time (JIT) compilers to improve performance. The size and complexity of JIT-based systems, combined with the dynamic nature of JIT-compiler optimizations, make it challenging to locate and fix JIT compiler bugs quickly. At the same time, JIT compiler bugs can result in exploitable security vulnerabilities, making rapid bug localization important. Existing work on automated bug localization focuses on static code, i.e., code that is not generated at runtime, and so cannot handle bugs in JIT compilers that generate incorrect code during optimization. This paper describes an approach to automated bug localization in JIT compilers, down to the level of distinct optimization phases, starting with a single initial Proof-of-Concept (PoC) input that demonstrates the bug. Experiments using a prototype implementation of our ideas on Google’s V8 JavaScript interpreter and TurboFan JIT compiler demonstrates that it can successfully identify buggy optimization phases. 
    more » « less
  3. null (Ed.)
    Today's data science pipelines often rely on user-defined functions (UDFs) written in Python. But interpreted Python code is slow, and Python UDFs cannot be compiled to machine code easily. We present Tuplex, a new data analytics framework that just in-time compiles developers' natural Python UDFs into efficient, end-to-end optimized native code. Tuplex introduces a novel dual-mode execution model that compiles an optimized fast path for the common case, and falls back on slower exception code paths for data that fail to match the fast path's assumptions. Dual-mode execution is crucial to making end-to-end optimizing compilation tractable: by focusing on the common case, Tuplex keeps the code simple enough to apply aggressive optimizations. Thanks to dual-mode execution, Tuplex pipelines always complete even if exceptions occur, and Tuplex's post-facto exception handling simplifies debugging. We evaluate Tuplex with data science pipelines over real-world datasets. Compared to Spark and Dask, Tuplex improves end-to-end pipeline runtime by 5-91x and comes within 1.1-1.7x of a hand-optimized C++ baseline. Tuplex outperforms other Python compilers by 6x and competes with prior, more limited query compilers. Optimizations enabled by dual-mode processing improve runtime by up to 3x, and Tuplex performs well in a distributed setting on serverless functions. 
    more » « less
  4. Cathie Olschanowsky (Ed.)
    The Sparse Polyhedral Framework (SPF) provides vital support to scientific applications, but is limited in portability. SPF extends the Polyhedral Model to non-affine codes. Scientific applications need the optimizations SPF enables, but current SPF tools don’t support GPUs or other heterogeneous hardware targets. As clock speeds continue to stagnate, scientific applications need the performance enhancements enabled by both SPF and newer heterogeneous hardware. The MLIR (Multi-Level Intermediate Representation) ecosystem offers a large, extensible, and cooperating set of intermediate representations (called dialects). A typical compiler has one main intermediate representation, whereas an MLIR based compiler will have many. Because of this flexibility, the MLIR ecosystem has many dialects designed with heterogeneous hardware platforms in mind. This work creates an MLIR SPF dialect. The dialect enables SPF optimizations and is capable of generating GPU code as well as CPU code from SPF representations. Previous C based SPF front ends are not capable of generating GPU code. The SPF dialect representations of common sparse scientific kernels generate CPU code competitive with the existing C based front end, and GPU code competitive with standard benchmarks. 
    more » « less
  5. Compiler correctness is crucial, as miscompilation can falsify program behaviors, leading to serious consequences over the software supply chain. In the literature, fuzzing has been extensively studied to uncover compiler defects. However, compiler fuzzing remains challenging: Existing arts focus on black- and grey-box fuzzing, which generates test programs without sufficient understanding of internal compiler behaviors. As such, they often fail to construct test programs to exercise intricate optimizations. Meanwhile, traditional white-box techniques, such as symbolic execution, are computationally inapplicable to the giant codebase of compiler systems. Recent advances demonstrate that Large Language Models (LLMs) excel in code generation/understanding tasks and even have achieved state-of-the-art performance in black-box fuzzing. Nonetheless, guiding LLMs with compiler source-code information remains a missing piece of research in compiler testing. To this end, we propose WhiteFox, the first white-box compiler fuzzer using LLMs with source-code information to test compiler optimization, with a spotlight on detecting deep logic bugs in the emerging deep learning (DL) compilers. WhiteFox adopts a multi-agent framework: (i) an LLM-based analysis agent examines the low-level optimization source code and produces requirements on the high-level test programs that can trigger the optimization; (ii) an LLM-based generation agent produces test programs based on the summarized requirements. Additionally, optimization-triggering tests are also used as feedback to further enhance the test generation prompt on the fly. Our evaluation on the three most popular DL compilers (i.e., PyTorch Inductor, TensorFlow-XLA, and TensorFlow Lite) shows that WhiteFox can generate high-quality test programs to exercise deep optimizations requiring intricate conditions, practicing up to 8 times more optimizations than state-of-the-art fuzzers. To date, WhiteFox has found in total 101 bugs for the compilers under test, with 92 confirmed as previously unknown and 70 already fixed. Notably, WhiteFox has been recently acknowledged by the PyTorch team, and is in the process of being incorporated into its development workflow. Finally, beyond DL compilers, WhiteFox can also be adapted for compilers in different domains, such as LLVM, where WhiteFox has already found multiple bugs. 
    more » « less