skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lessons Learned from a Comparative Study of Long-Term Action Research with Community Design of Infrastructural Systems
The question of how to develop and maintain appropriate, socially informed and sophisticated infrastructural systems is an ongoing concern for CSCW. Information infrastructure development efforts are usually large endeavors that involve many stakeholders, including several organizations that need to interoperate with legacy systems. Projects typically take several years to develop. The duration, variety, and sites of engagement in the development of information infrastructures can be challenging to approach with typical CSCW approaches. In this paper, we compare and analyze our varied experiences in order to generate lessons learned based on being embedded for three or more years as action researchers and ethnographers in infrastructure development projects in the domains of traffic engineering, vocational education, and ocean science. Drawing upon these experiences, as well as literature in infrastructure studies, design methodologies, and organizational studies, we extract guidance for researchers and practitioners seeking to understand and engage in long-term organizationally complex system development projects. Among these lessons, we encourage revisiting previously gathered data as scope and scale change, observing changes in the discursive reference public who will benefit from the system, and planning for different intellectual points of entry and exit. This paper lays groundwork for future developments in theory and method of collaborative design and development in and with complex systems.  more » « less
Award ID(s):
1954620
PAR ID:
10602370
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Association for Computing Machinery (ACM)
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
7
Issue:
CSCW1
ISSN:
2573-0142
Format(s):
Medium: X Size: p. 1-35
Size(s):
p. 1-35
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This manuscript shares the lessons learned from providing scientific computing support to over 600 researchers and discipline experts, helping them develop reproducible and scalable analytical workflows to process large amounts of heterogeneous data.When providing scientific computing support, focus is first placed on how to foster the collaborative aspects of multidisciplinary projects on the technological side by providing virtual spaces to communicate and share documents. Then insights on data management planning and how to implement a centralized data management workflow for data‐driven projects are provided.Developing reproducible workflows requires the development of code. We describe tools and practices that have been successful in fostering collaborative coding and scaling on remote servers, enabling teams to iterate more efficiently. We have found short training sessions combined with on‐demand specialized support to be the most impactful combination in helping scientists develop their technical skills.Here we share our experiences in enabling researchers to do science more collaboratively and more reproducibly beyond any specific project, with long‐lasting effects on the way researchers conduct science. We hope that other groups supporting team‐ and data‐driven science (in environmental science and beyond) will benefit from the lessons we have learned over the years through trial and error. 
    more » « less
  2. Jansen, Anton; Lewis, Grace A. (Ed.)
    Over the past three decades software engineering researchers have produced a wide range of techniques and tools for understanding the architectures of large, complex systems. However, these have tended to be one-off research projects, and their idiosyncratic natures have hampered research collaboration, extension and combination of the tools, and technology transfer. The area of software architecture is rich with disjoint research and development infrastructures, and datasets that are either proprietary or captured in proprietary formats. This paper describes a concerted effort to reverse these trends. We have designed and implemented a flexible and extensible infrastructure (SAIN) with the goal of sharing, replicating, and advancing software architecture research. We have demonstrated that SAIN is capable of incorporating the constituent tools extracted from three independently developed, large, long-lived software architecture research environments. We discuss SAIN’s ambitious goals, the challenges we have faced in achieving those goals, the key decisions made in SAIN’s design and implementation, the lessons learned from our experience to date, and our ongoing and future work. 
    more » « less
  3. null (Ed.)
    Over the past three decades software engineering researchers have produced a wide range of techniques and tools for understanding the architectures of large, complex systems. However, these have tended to be one-off research projects, and their idiosyncratic natures have hampered research collaboration, extension and combination of the tools, and technology transfer. The area of software architecture is rich with disjoint research and development infrastructures, and datasets that are either proprietary or captured in proprietary formats. This paper describes a concerted effort to reverse these trends. We have designed and implemented a flexible and extensible infrastructure (SAIN) with the goal of sharing, replicating, and advancing software architecture research. We have demonstrated that SAIN is capable of incorporating the constituent tools extracted from three independently developed, large, long-lived software architecture research environments. We discuss SAIN's ambitious goals, the challenges we have faced in achieving those goals, the key decisions made in SAIN's design and implementation, the lessons learned from our experience to date, and our ongoing and future work. 
    more » « less
  4. Three Northern Arapaho and Eastern Shoshone–serving districts formed a researcher–practitioner partnership with the Wyoming Department of Education, the American Institutes for Research®, and BootUp Professional Development to advance the computer science (CS) education of their elementary students in ways that strengthen their Indigenous identities and knowledges. In this paper, we share experiences from 2019 to 2022 with our curriculum development, professional development (PD), and classroom implementation. The researcher–practitioner partnership developed student and teacher materials to support elementary CS lessons aligned to Wyoming’s CS standards and “Indian Education for All” social studies standards. Indigenous community members served as experts to codesign culturally relevant resources. Teachers explored the curriculum resources during three 4-hour virtual and in-person PD sessions. The sessions were designed to position the teachers as designers of CS projects they eventually implemented in their classrooms. Projects completed by students included simulated interviews with Indigenous heroes and animations of students introducing themselves in their Native languages. Teachers described several positive effects of the Scratch lessons on students, including high engagement, increased confidence, and successful application of several CS concepts. The teachers also provided enthusiastic positive reviews of the ways the CS lessons allowed students to explore their Indigenous identities while preparing to productively use technology in their futures. The Wind River Elementary CS Collaborative is one model for how a researcher–practitioner partnership can utilize diverse forms of expertise, ways of knowing, and Indigenous language to engage in curriculum design, PD, and classroom implementation that supports culturally sustaining CS pedagogies in Indigenous communities. 
    more » « less
  5. While the amount of research on NBS is growing rapidly, there is a lack of evidence on community experiences of NBS design and implementation, particularly from low-income and informal settlements of African cities. This article adds new empirical evidence in this space through grounded analysis of NBS “niche” projects co-developed by intermediary organizations and communities in five sites across three settlements in Nairobi and Dar es Salaam. Findings are organized around four established NBS knowledge gaps: (1) NBS-society relations; (2) Design; (3) Implementation; (4) Effectiveness. We find that across the five studied sites, residents' perceptions and valuation of urban nature has changed through processes of co-design and co-implementation, enabling community ownership of projects, and hence playing a crucial role in NBS effectiveness over time. The integration of gray components into green infrastructure to create hybrid systems has proven necessary to meet physical constraints and communities' urgent needs such as flood mitigation. However, maintenance responsibilities and cost burdens are persisting issues that highlight the complex reality of NBS development in informal settlements. The cases highlight key considerations for actors involved in NBS development to support the replication, scaling up and institutionalization of NBS. These include the need to: (i) develop forms of engagement that align with co-production values; (ii) capture communities' own valuation of and motivations with NBS development for integration into design; (iii) elaborate technical guidance for hybrid green-gray infrastructure systems that can be constructed with communities; and (iv) help define and establish structures for maintenance responsibilities (especially governmental vs. civil society) that will enhance the environmental stewardship of public spaces. 
    more » « less