Program verification and synthesis frameworks that allow one to customize the language in which one is interested typically require the user to provide a formally defined semantics for the language. Because writing a formal semantics can be a daunting and error-prone task, this requirement stands in the way of such frameworks being adopted by non-expert users. We present an algorithm that can automatically synthesize inductively defined syntax-directed semantics when given (i) a grammar describing the syntax of a language and (ii) an executable (closed-box) interpreter for computing the semantics of programs in the language of the grammar. Our algorithm synthesizes the semantics in the form of Constrained-Horn Clauses (CHCs), a natural, extensible, and formal logical framework for specifying inductively defined relations that has recently received widespread adoption in program verification and synthesis. The key innovation of our synthesis algorithm is a Counterexample-Guided Synthesis (CEGIS) approach that breaks the hard problem of synthesizing a set of constrained Horn clauses into small, tractable expression-synthesis problems that can be dispatched to existing SyGuS synthesizers. Our tool Synantic synthesized inductively-defined formal semantics from 14 interpreters for languages used in program-synthesis applications. When synthesizing formal semantics for one of our benchmarks, Synantic unveiled an inconsistency in the semantics computed by the interpreter for a language of regular expressions; fixing the inconsistency resulted in a more efficient semantics and, for some cases, in a 1.2x speedup for a synthesizer solving synthesis problems over such a language.
more »
« less
Semantics-guided synthesis
This paper develops a new framework for program synthesis, called semantics-guided synthesis (SemGuS), that allows a user to provide both the syntax and the semantics for the constructs in the language. SemGuS accepts a recursively defined big-step semantics, which allows it, for example, to be used to specify and solve synthesis problems over an imperative programming language that may contain loops with unbounded behavior. The customizable nature of SemGuS also allows synthesis problems to be defined over a non-standard semantics, such as an abstract semantics. In addition to the SemGuS framework, we develop an algorithm for solving SemGuS problems that is capable of both synthesizing programs and proving unrealizability, by encoding a SemGuS problem as a proof search over Constrained Horn Clauses: in particular, our approach is the first that we are aware of that can prove unrealizabilty for synthesis problems that involve imperative programs with unbounded loops, over an infinite syntactic search space. We implemented the technique in a tool called MESSY, and applied it to SyGuS problems (i.e., over expressions), synthesis problems over an imperative programming language, and synthesis problems over regular expressions.
more »
« less
- Award ID(s):
- 1763871
- PAR ID:
- 10602576
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 5
- Issue:
- POPL
- ISSN:
- 2475-1421
- Format(s):
- Medium: X Size: p. 1-32
- Size(s):
- p. 1-32
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Rust type system guarantees memory safety and data-race freedom. However, to satisfy Rust's type rules, many familiar implementation patterns must be adapted substantially. These necessary adaptations complicate programming and might hinder language adoption. In this paper, we demonstrate that, in contrast to manual programming, automatic synthesis is not complicated by Rust's type system, but rather benefits in two major ways. First, a Rust synthesizer can get away with significantly simpler specifications. While in more traditional imperative languages, synthesizers often require lengthy annotations in a complex logic to describe the shape of data structures, aliasing, and potential side effects, in Rust, all this information can be inferred from the types, letting the user focus on specifying functional properties using a slight extension of Rust expressions. Second, the Rust type system reduces the search space for synthesis, which improves performance. In this work, we present the first approach to automatically synthesizing correct-by-construction programs in safe Rust. The key ingredient of our synthesis procedure is Synthetic Ownership Logic, a new program logic for deriving programs that are guaranteed to satisfy both a user-provided functional specification and, importantly, Rust's intricate type system. We implement this logic in a new tool called RusSOL. Our evaluation shows the effectiveness of RusSOL, both in terms of annotation burden and performance, in synthesizing provably correct solutions to common problems faced by new Rust developers.more » « less
-
The tensor programming abstraction is a foundational paradigm which allows users to write high performance programs via a high-level imperative interface. Recent work onsparse tensor compilershas extended this paradigm to sparse tensors (i.e., tensors where most entries are not explicitly represented). With these systems, users define the semantics of the program and the algorithmic decisions in a concise language that can be compiled to efficient low-level code. However, these systems still require users to make complex decisions about program structure and memory layouts to write efficient programs. This work presents.Galley, a system for declarative tensor programming that allows users to write efficient tensor programs without making complex algorithmic decisions. Galley is the first system to perform cost based lowering of sparse tensor algebra to the imperative language of sparse tensor compilers, and the first to optimize arbitrary operators beyond Σ and *. First, it decomposes the input program into a sequence of aggregation steps through a novel extension of the FAQ framework. Second, Galley optimizes and converts each aggregation step to a concrete program, which is compiled and executed with a sparse tensor compiler. We show that Galley produces programs that are 1-300x faster than competing methods for machine learning over joins and 5-20x faster than a state-of-the-art relational database for subgraph counting workloads with a minimal optimization overhead.more » « less
-
null (Ed.)We present Calyx, a new intermediate language (IL) for compiling high-level programs into hardware designs. Calyx combines a hardware-like structural language with a software-like control flow representation with loops and conditionals. This split representation enables a new class of hardware-focused optimizations that require both structural and control flow information which are crucial for high-level programming models for hardware design. The Calyx compiler lowers control flow constructs using finite-state machines and generates synthesizable hardware descriptions. We have implemented Calyx in an optimizing compiler that translates high-level programs to hardware. We demonstrate Calyx using two DSL-to-RTL compilers, a systolic array generator and one for a recent imperative accelerator language, and compare them to equivalent designs generated using high-level synthesis (HLS). The systolic arrays are 4.6× faster and 1.11× larger on average than HLS implementations, and the HLS-like imperative language compiler is within a few factors of a highly optimized commercial HLS toolchain. We also describe three optimizations implemented in the Calyx compiler.more » « less
-
Conditional literals are an expressive Answer Set Programming language construct supported by the solver clingo. Their semantics are currently defined by a translation to infinitary propositional logic, however, we develop an alternative characterization with the SM operator which does not rely on grounding. This allows us to reason about the behavior of a broad class of clingo programs/encodings containing conditional literals, without referring to a particular input/instance of an encoding. We formalize the intuition that conditional literals behave as nested implications, and prove the equivalence of our semantics to those implemented by clingo.more » « less
An official website of the United States government
