Making online social communities ‘better’ is a challenging undertaking, as online communities are extraordinarily varied in their size, topical focus, and governance. As such, what is valued by one community may not be valued by another.However, community values are challenging to measure as they are rarely explicitly stated.In this work, we measure community values through the first large-scale survey of community values, including 2,769 reddit users in 2,151 unique subreddits. Through a combination of survey responses and a quantitative analysis of publicly available reddit data, we characterize how these values vary within and across communities.Amongst other findings, we show that community members disagree about how safe their communities are, that longstanding communities place 30.1% more importance on trustworthiness than newer communities, and that community moderators want their communities to be 56.7% less democratic than non-moderator community members.These findings have important implications, including suggesting that care must be taken to protect vulnerable community members, and that participatory governance strategies may be difficult to implement.Accurate and scalable modeling of community values enables research and governance which is tuned to each community's different values. To this end, we demonstrate that a small number of automatically quantifiable features capture a significant yet limited amount of the variation in values between communities with a ROC AUC of 0.667 on a binary classification task.However, substantial variation remains, and modeling community values remains an important topic for future work.We make our models and data public to inform community design and governance.
more »
« less
No Community Can Do Everything: Why People Participate in Similar Online Communities
Large-scale quantitative analyses have shown that individuals frequently talk to each other about similar things in different online spaces. Why do these overlapping communities exist? We provide an answer grounded in the analysis of 20 interviews with active participants in clusters of highly related subreddits. Within a broad topical area, there are a diversity of benefits an online community can confer. These include (a) specific information and discussion, (b) socialization with similar others, and (c) attention from the largest possible audience. A single community cannot meet all three needs. Our findings suggest that topical areas within an online community platform tend to become populated by groups of specialized communities with diverse sizes, topical boundaries, and rules. Compared with any single community, such systems of overlapping communities are able to provide a greater range of benefits.
more »
« less
- PAR ID:
- 10602593
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 6
- Issue:
- CSCW1
- ISSN:
- 2573-0142
- Format(s):
- Medium: X Size: p. 1-25
- Size(s):
- p. 1-25
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many benefits of online communities---such as obtaining new information, opportunities, and social connections---increase with size. Thus, a successful'' online community often evokes an image of hundreds of thousands of users, and practitioners and researchers alike have sought to devise methods to achieve growth and thereby, success. On the other hand, small online communities exist in droves and many persist in their smallness over time. Turning to the highly popular discussion website Reddit, which is made up of hundreds of thousands of communities, we conducted a qualitative interview study examining how and why people participate in these persistently small communities, in order to understand why these communities exist when popular approaches would assume them to be failures. Drawing from twenty interviews, this paper makes several contributions: we describe how small communities provide unique informational and interactional spaces for participants, who are drawn by the hyperspecific aspects of the community; we find that small communities do not promote strong dyadic interpersonal relationships but rather promote group-based identity; and we highlight how participation in small communities is part of a broader, ongoing strategy to curate participants' online experience. We argue that online communities can be seen as nested niches: parts of an embedded, complex, symbiotic socio-informational ecosystem. We suggest ways that social computing research could benefit from more deliberate considerations of interdependence between diverse scales of online community sizes.more » « less
-
Abstract 1. The occurrence and distributions of wildlife populations and communities are shifting as a result of global changes. To evaluate whether these shifts are negatively impacting biodiversity processes, it is critical to monitor the status, trends and effects of environmental variables on entire communities. However, modelling the dynamics of multiple species simultaneously can require large amounts of diverse data, and few modelling approaches exist to simultaneously provide species and community‐level inferences. 2. We present an ‘integrated community occupancy model’ (ICOM) that unites principles of data integration and hierarchical community modelling in a single framework to provide inferences on species‐specific and community occurrence dynamics using multiple data sources. The ICOM combines replicated and nonreplicated detection–nondetection data sources using a hierarchical framework that explicitly accounts for different detection and sampling processes across data sources. We use simulations to compare the ICOM to previously developed hierarchical community occupancy models and single species integrated distribution models. We then apply our model to assess the occurrence and biodiversity dynamics of foliage‐gleaning birds in the White Mountain National Forest in the northeastern USA from 2010 to 2018 using three independent data sources. 3. Simulations reveal that integrating multiple data sources in the ICOM increased precision and accuracy of species and community‐level inferences compared to single data source models, although benefits of integration were dependent on the information content of individual data sources (e.g. amount of replication). Compared to single species models, the ICOM yielded more precise species‐level estimates. Within our case study, the ICOM had the highest out‐of‐sample predictive performance compared to single species models and models that used only a subset of the three data sources. 4. The ICOM provides more precise estimates of occurrence dynamics compared to multi‐species models using single data sources or integrated single‐species models. We further found that the ICOM had improved predictive performance across a broad region of interest with an empirical case study of forest birds. The ICOM offers an attractive approach to estimate species and biodiversity dynamics, which is additionally valuable to inform management objectives of both individual species and their broader communities.more » « less
-
This descriptive study examines the experiences of virtually-trained new members in a hybrid distributed community of practice (CoP) focused on undergraduate genomics education. We utilized a sequential explanatory mixed methods research design consisting of an engagement survey for all community members (n=124), followed by interviews with new members (n=15). Survey analysis identifies several areas in which new members do not differ from members with longer involvement, including in motivations for involvement, levels of engagement, satisfaction, and perceived benefits of community involvement. These findings indicate ways in which virtual training and integration was able to facilitate important community outcomes within a new, online context. Our interviews reveal important elements of training new CoP members, including onboarding, implementation, and community engagement opportunities, that successfully facilitated new members’ integration into the community and contributed to their meeting the aforementioned outcomes. The findings of this study provide useful lessons and structures for growing communities through virtual means.more » « less
-
Participating in online communities has significant benefits to students learning in terms of students’ motivation, persistence, and learning outcomes. However, maintaining and supporting online learning communities is very challenging and requires tremendous work. Automatic support is desirable in this situation. The purpose of this work is to explore the use of deep learning algorithms for automatic text generation in providing emotional and community support for a massive online learning community, Scratch. Particularly, state-of-art deep learning language models GPT-2 and recurrent neural network (RNN) are trained using two million comments from the online learning community. We then conduct both a readability test and human evaluation on the automatically generated results for offering support to the online students. The results show that the GPT-2 language model can provide timely and human-written like replies in a style genuine to the data set and context for offering related support.more » « less
An official website of the United States government
