This paper presents an antenna-coupled non-linear vanadium dioxide (VO2) microbolometer operating in the non-linear metal–insulator transition (MIT) region with an ultra-high responsivity of 6.55 × 104 V/W. Sputtered VO2 films used in this device exhibit 104 times change in resistivity between the dielectric and conductive states. The VO2 microbolometer is coupled to a wideband dipole antenna operating at 31–55 GHz and a coplanar waveguide for probed measurement. To enhance the sensitivity, the sensor is suspended in air by micro-electro-mechanical systems process. The large thermal coefficient of resistance of VO2 is utilized by DC biasing the device in the MIT region. Measurements for the fabricated sensor were performed, and a high responsivity was demonstrated, owing to non-linear conductivity change in the transition region. The measured sensitivity is >102 times higher than the state-of-the-art sensors. In addition, the concept of utilizing the proposed VO2 sensor in a mmWave imager was demonstrated by the radiation pattern measurement of a 4 × 4 (16 elements) antenna-coupled VO2 sensor array. The results presented in this work reveal the initial step to employ VO2's MIT for a hyper-sensitive sensor in future mmWave sensing and imaging applications.
more »
« less
High-frequency electrical behavior in V3O5 thin films
Vanadium oxides are known for their metal–insulator transition (MIT), with V3O5 being notable for its transition temperature exceeding room temperature. At about 430 K, this material shows a change in crystal symmetry accompanied with one order of magnitude increase in its electrical conductivity and alterations in its optical properties. Although the property changes during the MIT in V3O5 are less pronounced than those observed in VO2, its transition temperature is 90 K higher, making it appealing for applications requiring elevated temperatures. In this article, the high-frequency characteristics were determined in a V3O5 two-terminal device in the range from 5 to 35 GHz. The S-parameters showed that the return loss at room temperature was close to −1.5 dB, and the isolation between ports was approximately −50 dB. At temperatures above the metal–insulator transition, the isolation decreased to around −40 dB at 35 GHz. For S11 and S22, similar behavior was observed at room temperature, with a notable change in the S-parameter phase of the device. This behavior suggests that V3O5 may function well as a capacitor because the considerable change in phase could control the flow of electrical signals in devices. This property also may be used for matching purposes, especially considering its response to temperature changes. Additionally, conductivity calculation from S-parameters shows a decrease of approximately two orders of magnitude at 500 K and one order of magnitude at 300 K compared to DC values. These findings highlight V3O5 potential for integration into radio frequency devices that demand consistent performance in high-temperature environments.
more »
« less
- Award ID(s):
- 2132700
- PAR ID:
- 10603111
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 137
- Issue:
- 23
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at approximately 68 °C, with associated sharp changes in its physical (e.g., optical, electrical, and mechanical) properties. This behavior makes VO2 films of interest in many potential applications, including memory devices, switches, sensors, and optical modulators. For ON/OFF like digital applications, an abrupt switching behavior is ideal. However, to continuously change VO2 metal/insulator phase ratio for analog-like operation, the intrinsic hysteresis characteristic of VO2 MIT renders the phase control becoming a formidable challenge. This paper considers the problem of controlling and tracking desired optical transmittance via continuous phase ratio change. The problem becomes worse while considering the differences of individual thin-film samples and the hysteresis associated with the phase change within a narrow temperature range. This paper reports a robust feedback controller using an optical transmittance measurement and based on an uncertainty and disturbance estimator (UDE) architecture. The proposed controller is capable of mitigating the adverse effect of hysteresis, while also compensating for various uncertainties. The effectiveness of the proposed methodology is demonstrated with experimental validation.more » « less
-
Abstract Oxides that exhibit an insulator–metal transition can be used to fabricate energy‐efficient relaxation oscillators for use in hardware‐based neural networks but there are very few oxides with transition temperatures above room temperature. Here the structural, electrical, and thermal properties of V3O5thin films and their application as the functional oxide in metal/oxide/metal relaxation oscillators are reported. The V3O5devices show electroforming‐free volatile threshold switching and negative differential resistance (NDR) with stable (<3% variation) cycle‐to‐cycle operation. The physical mechanisms underpinning these characteristics are investigated using a combination of electrical measurements, in situ thermal imaging, and device modeling. This shows that conduction is confined to a narrow filamentary path due to self‐confinement of the current distribution and that the NDR response is initiated at temperatures well below the insulator–metal transition temperature where it is dominated by the temperature‐dependent conductivity of the insulating phase. Finally, the dynamics of individual and coupled V3O5‐based relaxation oscillators is reported, showing that capacitively coupled devices exhibit rich non‐linear dynamics, including frequency and phase synchronization. These results establish V3O5as a new functional material for volatile threshold switching and advance the development of robust solid‐state neurons for neuromorphic computing.more » « less
-
Abstract Vanadium dioxide (VO2) is a well‐studied Mott‐insulator because of the very abrupt physical property switching during its semiconductor‐to‐metal transition (SMT) around 341 K (68 °C). In this work, through novel oxide‐metal nanocomposite designs (i.e., Au:VO2and Pt:VO2), a very broad range of SMT temperature tuning from≈323.5 to≈366.7 K has been achieved by varying the metallic secondary phase in the nanocomposites (i.e., Au:VO2and Pt:VO2thin films, respectively). More surprisingly, the SMTTccan be further lowered to≈301.8 K (near room temperature) by reducing the Au particle size from 11.7 to 1.7 nm. All the VO2nanocomposite thin films maintain superior phase transition performance, i.e., large transition amplitude, very sharp transition, and narrow width of thermal hysteresis. Correspondingly, a twofold variation of the complex dielectric function has been demonstrated in these metal‐VO2nanocomposites. The wide range physical property tuning is attributed to the band structure reconstruction at the metal‐VO2phase boundaries. This demonstration paved a novel approach for tuning the phase transition property of Mott‐insulating materials to near room temperature transition, which is important for sensors, electrical switches, smart windows, and actuators.more » « less
-
Single crystals of the perovskite nickelate NdNiO3 with dimensions of up to 50 μm on edge have been successfully grown using the flux method at a temperature of 400 °C and oxygen pressure of 200 bar. The crystals were investigated by a combination of techniques, including high-resolution synchrotron X-ray single-crystal and powder diffraction and physical property measurements such as magnetic susceptibility and resistivity. Resistivity measurements revealed a metal-insulator transition (MIT) at TMIT~180 K with apparent thermal hysteresis; however, no superlattice peaks or peak splitting below TMIT, which corresponds to a structural transition from Pbnm to P21/n, was observed. The successful growth of NdNiO3 crystals at relatively low temperatures and oxygen pressure provides an alternative approach for preparing single crystals of interesting perovskites such as RNiO3 (R = Sm-Lu) and parent phases of superconducting square planar nickelates.more » « less
An official website of the United States government
