We develop, advance, and promote a previously existing framework called the Qualitative-Quantitative-Qualitative workflow (Q1Q2Q3, pronounced “Q-Q-Q”) to systematically guide the content of interdisciplinary collaborations and improve the teaching of statistics and data science. The Q1Q2Q3 workflow is designed to help statisticians and data scientists develop skills and techniques for collaboration to work with domain experts across academic fields, industry sectors, and organizations. The Q1Q2Q3 workflow explicitly emphasizes the importance of the qualitative context of a project, as well as the qualitative interpretation of quantitative findings. We explain Q1Q2Q3 and provide guidance for implementing each stage of the workflow. We describe how we teach Q1Q2Q3 within a statistics and data science collaboration course and present data evaluating its effectiveness. We also describe how Q1Q2Q3 can be useful for educators teaching introductory, projects-based, and technical statistics and data science courses. We believe that the Q1Q2Q3 workflow is an easy-to-implement technique that is beneficial and necessary for statistics and data science education and practice. It can be used to weave ethics into each stage of practice so that statisticians and data scientists can successfully transform evidence into action for the benefit of society.
more »
« less
Orienting, Framing, Bridging, Magic, and Counseling: How Data Scientists Navigate the Outer Loop of Client Collaborations in Industry and Academia
Data scientists often collaborate with clients to analyze data to meet a client's needs. What does the end-to-end workflow of a data scientist's collaboration with clients look like throughout the lifetime of a project? To investigate this question, we interviewed ten data scientists (5 female, 4 male, 1 non-binary) in diverse roles across industry and academia. We discovered that they work with clients in a six-stage outer-loop workflow, which involves 1) laying groundwork by building trust before a project begins, 2) orienting to the constraints of the client's environment, 3) collaboratively framing the problem, 4) bridging the gap between data science and domain expertise, 5) the inner loop of technical data analysis work, 6) counseling to help clients emotionally cope with analysis results. This novel outer-loop workflow contributes to CSCW by expanding the notion of what collaboration means in data science beyond the widely-known inner-loop technical workflow stages of acquiring, cleaning, analyzing, modeling, and visualizing data. We conclude by discussing the implications of our findings for data science education, parallels to design work, and unmet needs for tool development.
more »
« less
- Award ID(s):
- 1845900
- PAR ID:
- 10603379
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 5
- Issue:
- CSCW2
- ISSN:
- 2573-0142
- Format(s):
- Medium: X Size: p. 1-28
- Size(s):
- p. 1-28
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Undergraduate students often have limited access to industry-focused research opportunities. To address this, faculty and students from 10 primarily undergraduate institutions collaborated with Sampling Human, a biotechnology company, to test a biocytometry workflow for single-cell analysis. The project engaged 15 students with varying levels of research experience and demonstrated that prior research expertise was not essential for successfully using the workflow. Participants followed standardized protocols and generated reproducible data comparable to that of PhD-level scientists. Despite some technical challenges, 91.7% of participants completed the study, showcasing the approachability and reliability of the workflow. This collaboration highlights the potential of industry partnerships to expand research opportunities, enhance academic visibility, and foster academic-corporate co-publications.more » « less
-
Broadband infrastructure in urban parks may serve crucial functions including an amenity to boost overall park use and a bridge to propagate WiFi access into contiguous neighborhoods. This project: SCC:PG Park WiFi as a BRIDGE to Community Resilience has developed a new model —Build Resilience through the Internet and Digital Greenspace Exposure, leveraging off-the-shelf WiFi technology, novel algorithms, community assets, and local partnerships to lower greenspace WiFi costs. This interdisciplinary work leverages: computer science, information studies, landscape architecture, and public health. Collaboration methodologies and relational definitions across disciplines are still nascent —especially when paired with civic-engaged, applied research. Student researchers (UG/Grad) are excellent partners in bridging disciplinary barriers and constraints. Their capacity to assimilate multiple frameworks has produced refinements to the project’s theoretical lenses and suggested novel socio-technical methodology improvements. Further, they are excellent ambassadors to community partners and stakeholders. In BRIDGE, we tested two mechanisms to augment student research participation. In both, we leveraged a classic, curriculum-based model named the Partnership for Action Learning in Sustainability program (PALS). This campus-wide, community-engaged initiative pairs faculty and students with community partners. PALS curates economic, environmental, and social sustainability challenges and scopes projects to customize appropriate coursework that addresses identified challenges. Outcomes include: literature searches, wireframes, and design plans that target solutions to civic problems. Constraints include the short semester timeframe and curriculum-learning-outcome constraints. (1) On BRIDGE, Dr. Kweon executed a semester-based Landscape Architecture PALS 400-level-studio. 18 undergraduates conducted in-class and in-field work to assess community needs and proposed design solutions for future park-wide WiFi. Research topics included: community-park history, neighborhood demographics, case-study analysis, and land-cover characteristics. The students conducted an in-Park, community engagement session —via interactive posterboard surveys, to gain input on what park amenities might be redesigned or added to promote WiFi use. The students then produced seven re-design plans; one included a café/garden, with an eco-corridor that integrated technology with nature. (2) From the classic, curriculum-based PALS model we created a summer-intensive for our five research assistants, to stimulate interdisciplinary collaboration in their research tasks and co-analysis of project data products: experimental technical WiFi-setup, community survey results, and stakeholder needs-assessments. Students met weekly with each other and team leadership, exchanged journal articles, and attended joint research events. This model shows promise for integrating students more formally into an interdisciplinary research project. An end-of-intensive focus group highlighted, from the students’ perspective, the pro/cons of this model. Results: In contrasting the two mechanisms, our results include: Model 1 is tried-and-trued and produces standardized, reliable products. However, as work is group based, student independence is limited —to explore topics/themes of interest. Civic groups are typically thrilled with the diversity of action plans produced. Model 2 provides greater independence in student-learning outcomes, fosters interdisciplinary, “dictionary-building” that can be used by the full team, deepens methodological approaches, and allows for student stipend payments. Lessons learned: intensive time frame needed more research team support and ideally should be extended, when possible, over the full project-span. UMD-IRB#1785365-4; NSF-award: 2125526.more » « less
-
Abstract Biological and biomedical research is increasingly conducted in large, interdisciplinary collaborations to address problems with significant societal impact, such as reducing antibiotic resistance, identifying disease sub-types, and identifying genes that control for drought tolerance in plants. Many of these projects are data driven and involve the collection and analysis of biological data at a large-scale. As a result, life-science projects, which are frequently diverse, large and geographically dispersed, have created unique challenges for collaboration and training. We examine the communication and collaboration challenges in multidisciplinary research through an interview study with 20 life-science researchers. Our results show that both the inclusion of multiple disciplines and differences in work culture influence collaboration in life science. Using these results, we discuss opportunities and implications for designing solutions to better support collaborative tasks and workflows of life scientists. In particular, we show that life science research is increasingly conducted in large, multi-institutional collaborations, and these large groups rely on “mutual respect” and collaboration. However, we found that the interdisciplinary nature of these projects cause technical language barriers and differences in methodology affect trust. We use these findings to guide our recommendations for technology to support life science. We also present recommendations for life science research training programs and note the necessity for incorporating training in project management, multiple language, and discipline culture.more » « less
-
While coursework provides undergraduate data science students with some relevant analytic skills, many are not given the rich experiences with data and computing they need to be successful in the workplace. Additionally, students often have limited exposure to team-based data science and the principles and tools of collaboration that are encountered outside of school.In this paper, we describe the DSC-WAV program, an NSF-funded data science workforce development project in which teams of undergraduate sophomores and juniors work with a local non-profit organization on a data-focused problem. To help students develop a sense of agency and improve confidence in their technical and non-technical data science skills, the project promoted a team-based approach to data science, adopting several processes and tools intended to facilitate this collaboration.Evidence from the project evaluation, including participant survey and interview data, is presented to document the degree to which the project was successful in engaging students in team-based data science, and how the project changed the students' perceptions of their technical and non-technical skills. We also examine opportunities for improvement and offer insight to other data science educators who may want to implement a similar team-based approach to data science projects at their own institutions.more » « less
An official website of the United States government
