Satisfiability Modulo Theories (SMT)-based analysis allows exhaustive reasoning over complex distributed control plane routing behaviors, enabling verification of converged routing states under arbitrary conditions. To improve scalability of SMT solving, we introduce a modular verification approach to network control plane verification, where we cut a network into smaller fragments. Users specify an annotated cut which describes how to generate these fragments from the monolithic network, and we verify each fragment independently, using these annotations to define assumptions and guarantees over fragments akin to assume-guarantee reasoning. We prove that any converged states of the fragments are converged states of the monolithic network, and there exists an annotated cut that can generate fragments corresponding to any converged state of the monolithic network. We implement this procedure as Kirigami, an extension of the network verification language and tool NV, and evaluate it on industrial topologies with synthesized policies. We observe a 10x improvement in end-to-end NV verification time, with SMT solve time improving by up to 6 orders of magnitude.
more »
« less
Modular Control Plane Verification via Temporal Invariants
Monolithic control plane verification cannot scale to hyperscale network architectures with tens of thousands of nodes, heterogeneous network policies and thousands of network changes a day. Instead, modular verification offers improved scalability, reasoning over diverse behaviors, and robustness following policy updates. We introduce Timepiece, a new modular control plane verification system. While one class of verifiers, starting with Minesweeper, were based on analysis of stable paths, we show that such models, when deployed naïvely for modular verification, are unsound. To rectify the situation, we adopt a routing model based around a logical notion of time and develop a sound, expressive, and scalable verification engine. Our system requires that a user specifies interfaces between module components. We develop methods for defining these interfaces using predicates inspired by temporal logic, and show how to use those interfaces to verify a range of network-wide properties such as reachability or access control. Verifying a prefix-filtering policy using a non-modular verification engine times out on an 80-node fattree network after 2 hours. However, Timepiece verifies a 2,000-node fattree in 2.37 minutes on a 96-core virtual machine. Modular verification of individual routers is embarrassingly parallel and completes in seconds, which allows verification to scale beyond non-modular engines, while still allowing the full power of SMT-based symbolic reasoning.
more »
« less
- PAR ID:
- 10603757
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 7
- Issue:
- PLDI
- ISSN:
- 2475-1421
- Format(s):
- Medium: X Size: p. 50-75
- Size(s):
- p. 50-75
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents McNetKAT, a scalable tool for verifying probabilistic network programs. McNetKAT is based on a new semantics for the guarded and history-free fragment of Probabilistic NetKAT in terms of finite-state, absorbing Markov chains. This view allows the semantics of all programs to be computed exactly, enabling construction of an automatic verification tool. Domain-specific optimizations and a parallelizing backend enable McNetKAT to analyze networks with thousands of nodes, automatically reasoning about general properties such as probabilistic program equivalence and refinement, as well as networking properties such as resilience to failures. We evaluate McNetKAT's scalability using real-world topologies, compare its performance against state-of-the-art tools, and develop an extended case study on a recently proposed data center network design.more » « less
-
Despite recent advances, guaranteeing the correctness of large-scale distributed applications without compromising performance remains a challenging problem. Network and node failures are inevitable and, for some applications, careful control over how they are handled is essential. Unfortunately, existing approaches either completely hide these failures behind an atomic state machine replication (SMR) interface, or expose all of the network-level details, sacrificing atomicity. We propose a novel, compositional, atomic distributed object (ADO) model for strongly consistent distributed systems that combines the best of both options. The object-oriented API abstracts over protocol-specific details and decouples high-level correctness reasoning from implementation choices. At the same time, it intentionally exposes an abstract view of certain key distributed failure cases, thus allowing for more fine-grained control over them than SMR-like models. We demonstrate that proving properties even of composite distributed systems can be straightforward with our Coq verification framework, Advert, thanks to the ADO model. We also show that a variety of common protocols including multi-Paxos and Chain Replication refine the ADO semantics, which allows one to freely choose among them for an application's implementation without modifying ADO-level correctness proofs.more » « less
-
Abstract This paper presents , a new intermediate verification language and deductive verification tool that provides inbuilt support for concurrency reasoning. ’s meta-theory is based on the higher-order concurrent separation logic Iris, incorporating core features such as user-definable ghost state and thread-modular reasoning via shared-state invariants. To achieve better accessibility and enable proof automation via SMT solvers, restricts Iris to its first-order fragment. The entailed loss of expressivity is mitigated by a higher-order module system that enables proof modularization and reuse. We provide an overview of the language and describe key aspects of the supported proof automation. We evaluate on a benchmark suite of verification tasks comprising linearizability and memory safety proofs for common concurrent data structures and clients as well as one larger case study. Our evaluation shows that improves over existing proof automation tools for Iris in terms of verification times and usability. Moreover, the tool significantly reduces the proof overhead compared to proofs constructed using the Iris/Rocq proof mode.more » « less
-
Guarded Kleene Algebra with Tests (GKAT) provides a sound and complete framework to reason about trace equivalence between simple imperative programs. However, there are still several notable limitations. First, GKAT is completely agnostic with respect to the meaning of primitives, to keep equivalence decidable. Second, GKAT excludes non-local control flow such as goto, break, and return. To overcome these limitations, we introduceControl-Flow GKAT(CF-GKAT), a system that allows reasoning about programs that include non-local control flow as well as hardcoded values. CF-GKAT is able to soundly and completely verify trace equivalence of a larger class of programs, while preserving the nearly-linear efficiency of GKAT. This makes CF-GKAT suitable for the verification of control-flow manipulating procedures, such as decompilation and goto-elimination. To demonstrate CF-GKAT’s abilities, we validated the output of several highly non-trivial program transformations, such as Erosa and Hendren’s goto-elimination procedure and the output of Ghidra decompiler. CF-GKAT opens up the application of Kleene Algebra to a wider set of challenges, and provides an important verification tool that can be applied to the field of decompilation and control-flow transformation.more » « less
An official website of the United States government
