Abstract Using the invariant theory of arc spaces, we find minimal strong generating sets for certain cosets of affine vertex algebras inside free field algebras that are related to classical Howe duality. These results have several applications. First, for any vertex algebra $${{\mathcal {V}}}$$, we have a surjective homomorphism of differential algebras $$\mathbb {C}[J_{\infty }(X_{{{\mathcal {V}}}})] \rightarrow \text {gr}^{F}({{\mathcal {V}}})$$; equivalently, the singular support of $${{\mathcal {V}}}$$ is a closed subscheme of the arc space of the associated scheme $$X_{{{\mathcal {V}}}}$$. We give many new examples of classically free vertex algebras (i.e., this map is an isomorphism), including $$L_{k}({{\mathfrak {s}}}{{\mathfrak {p}}}_{2n})$$ for all positive integers $$n$$ and $$k$$. We also give new examples where the kernel of this map is nontrivial but is finitely generated as a differential ideal. Next, we prove a coset realization of the subregular $${{\mathcal {W}}}$$-algebra of $${{\mathfrak {s}}}{{\mathfrak {l}}}_{n}$$ at a critical level that was previously conjectured by Creutzig, Gao, and the 1st author. Finally, we give some new level-rank dualities involving affine vertex superalgebras.
more »
« less
This content will become publicly available on April 1, 2026
Hecke Operators for Curves Over Non-Archimedean Local Fields and Related Finite Rings
Abstract We study Hecke operators associated with curves over a non-archimedean local field $$K$$ and over the rings $$O/\mathfrak{m}^{N}$$, where $$O\subset K$$ is the ring of integers. Our main result is commutativity of a certain “small” local Hecke algebra over $$O/\mathfrak{m}^{N}$$, associated with a connected split reductive group $$G$$ such that $[G,G]$ is simply connected. The proof uses a Hecke algebra associated with $$G(K(\!(t)\!))$$ and a global argument involving $$G$$-bundles on curves.
more »
« less
- Award ID(s):
- 2349388
- PAR ID:
- 10603944
- Publisher / Repository:
- IMRN
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2025
- Issue:
- 7
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Let $$F$$ be a totally real field in which $$p$$ is unramified. Let $$\overline{r}:G_{F}\rightarrow \text{GL}_{2}(\overline{\mathbf{F}}_{p})$$ be a modular Galois representation that satisfies the Taylor–Wiles hypotheses and is tamely ramified and generic at a place $$v$$ above $$p$$ . Let $$\mathfrak{m}$$ be the corresponding Hecke eigensystem. We describe the $$\mathfrak{m}$$ -torsion in the $$\text{mod}\,p$$ cohomology of Shimura curves with full congruence level at $$v$$ as a $$\text{GL}_{2}(k_{v})$$ -representation. In particular, it only depends on $$\overline{r}|_{I_{F_{v}}}$$ and its Jordan–Hölder factors appear with multiplicity one. The main ingredients are a description of the submodule structure for generic $$\text{GL}_{2}(\mathbf{F}_{q})$$ -projective envelopes and the multiplicity one results of Emerton, Gee and Savitt [Lattices in the cohomology of Shimura curves, Invent. Math. 200 (1) (2015), 1–96].more » « less
-
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)We give the first almost-linear time algorithm for computing the maximal k-edge-connected subgraphs of an undirected unweighted graph for any constant k. More specifically, given an n-vertex m-edge graph G = (V,E) and a number k = log^o(1) n, we can deterministically compute in O(m+n^{1+o(1)}) time the unique vertex partition {V_1,… ,V_z} such that, for every i, V_i induces a k-edge-connected subgraph while every superset V'_i ⊃ V_{i} does not. Previous algorithms with linear time work only when k ≤ 2 [Tarjan SICOMP'72], otherwise they all require Ω(m+n√n) time even when k = 3 [Chechik et al. SODA'17; Forster et al. SODA'20]. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m^{1+o(1)} total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise k-edge-connectivity queries [Jin and Sun FOCS'20].more » « less
-
Abstract Let G be a p -adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-generator of the given component. Using Heiermann’s construction of these algebras, we describe the Bernstein components of the Gelfand–Graev representation for $$G=\mathrm {SO}(2n+1)$$ , $$\mathrm {Sp}(2n)$$ , and $$\mathrm {O}(2n)$$ .more » « less
-
The question of when a vertex algebra is a quantization of the arc space of its associated scheme has recently received a lot of attention in both the mathematics and physics literature. This property was first studied by Tomoyuki Arakawa and Anne Moreau (see their paper in the references), and was given the name \lq\lq classical freeness by Jethro van Ekeren and Reimundo Heluani [Comm. Math. Phys. 386 (2021), no. 1, pp. 495-550] in their work on chiral homology. Later, it was extended to vertex superalgebras by Hao Li [Eur. J. Math. 7 (2021), pp. 1689–1728]. In this note, we prove the classical freeness of the simple affine vertex superalgebra for all positive integers satisfying . In particular, it holds for the rational vertex superalgebras for all positive integers .more » « less
An official website of the United States government
