VecDyn Explorer hosts spatio-temporal population dynamics (i.e. seasonality) data on vectors (or potential vectors) of human, plant, and animal diseases. It includes a user-friendly GUI interface that provides simple visualizations of datasets to facilitate exploration of the data as well as an API to enable direct downloading of user selected datasets. VecDyn is hosted by the University of Notre Dame Center for Research Computing, and is being developed and maintained as part of the NSF funded VectorByte Initiative (www.vectorbyte.org).
more »
« less
VecTraits
VecTraits is a searchable database of hundreds of datasets on the traits of vectors (or potential vectors) of human, plant, and animal diseases. It includes a user-friendly GUI interface that provides simple visualizations of datasets to facilitate exploration of the data as well as an API to enable direct downloading of user selected datasets. VecTraits is hosted by the University of Notre Dame Center for Research Computing, and is being developed and maintained as part of the NSF funded VectorByte Initiative (www.vectorbyte.org).
more »
« less
- PAR ID:
- 10603960
- Publisher / Repository:
- University of Notre Dame
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Providing user-understandable explanations to justify recommendations could help users better understand the recommended items, increase the system’s ease of use, and gain users’ trust. A typical approach to realize it is natural language generation. However, previous works mostly adopt recurrent neural networks to meet the ends, leaving the potentially more effective pre-trained Transformer models under-explored. In fact, user and item IDs, as important identifiers in recommender systems, are inherently in different semantic space as words that pre-trained models were already trained on. Thus, how to effectively fuse IDs into such models becomes a critical issue. Inspired by recent advancement in prompt learning, we come up with two solutions: find alternative words to represent IDs (called discrete prompt learning) and directly input ID vectors to a pre-trained model (termed continuous prompt learning). In the latter case, ID vectors are randomly initialized but the model is trained in advance on large corpora, so they are actually in different learning stages. To bridge the gap, we further propose two training strategies: sequential tuning and recommendation as regularization. Extensive experiments show that our continuous prompt learning approach equipped with the training strategies consistently outperforms strong baselines on three datasets of explainable recommendation.more » « less
-
We present Variational Aspect-based Latent Topic Allocation (VALTA), a family of autoencoding topic models that learn aspect-based representations of reviews. VALTA defines a user-item encoder that maps bag-of-words vectors for combined reviews associated with each paired user; item onto structured embeddings, which in turn define per-aspect topic weights. We model individual reviews in a structured manner by inferring an aspect assignment for each sentence in a given review, where the per-aspect topic weights obtained by the user-item encoder serve to define a mixture over topics, conditioned on the aspect. The result is an autoencoding neural topic model for reviews, which can be trained in a fully unsupervised manner to learn topics that are structured into aspects. Experimental evaluation on large number of datasets demonstrates that aspects are interpretable, yield higher coherence scores than non-structured autoencoding topic model variants,; can be utilized to perform aspect-based comparison; genre discovery.more » « less
-
Effective vector representation models, e.g., word2vec and node2vec, embed real-world objects such as images and documents in high dimensional vector space. In the meanwhile, the objects are often associated with attributes such as timestamps and prices. Many scenarios need to jointly query the vector representations of the objects together with their attributes. These queries can be formalized as range-filtering approximate nearest neighbor search (ANNS) queries. Specifically, given a collection of data vectors, each associated with an attribute value whose domain has a total order. The range-filtering ANNS consists of a query range and a query vector. It finds the approximate nearest neighbors of the query vector among all the data vectors whose attribute values fall in the query range. Existing approaches suffer from a rapidly degrading query performance when the query range width shifts. The query performance can be optimized by a solution that builds an ANNS index for every possible query range; however, the index time and index size become prohibitive -- the number of query ranges is quadratic to the number n of data vectors. To overcome these challenges, for the query range contains all attribute values smaller than a user-provided threshold, we design a structure called the segment graph whose index time and size are the same as a single ANNS index, yet can losslessly compress the n ANNS indexes, reducing the indexing cost by a factor of Ω(n). To handle general range queries, we propose a 2D segment graph with average-case index size O(n log n) to compress n segment graphs, breaking the quadratic barrier. Extensive experiments conducted on real-world datasets show that our proposed structures outperformed existing methods significantly; our index also exhibits superior scalability.more » « less
-
Learning distances that operate directly on multidimensional sequences is challenging because such distances are structural by nature and the vectors in sequences are not independent. Generally, distances for sequences heavily depend on the ground metric between the vectors in sequences. We propose to learn the distance for sequences through learning a ground Mahalanobis metric for the vectors in sequences. The learning samples are sequences of vectors for which how the ground metric between vectors induces the overall distance is given, and the objective is that the distance induced by the learned ground metric produces large values for sequences from different classes and small values for those from the same class. We formulate the metric as a parameter of the distance, bring closer each sequence to an associated virtual sequence w.r.t. the distance to reduce the number of constraints, and develop a general iterative solution for any ground-metric-based sequence distance. Experiments on several sequence datasets demonstrate the effectiveness and efficiency of our method.more » « less
An official website of the United States government
