skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Properties of Cosmic Deuterons Measured by the Alpha Magnetic Spectrometer
Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of the deuteron ( D ) flux are presented. The measurements are based on 21 × 10 6 D nuclei in the rigidity range from 1.9 to 21 GV collected from May 2011 to April 2021. We observe that over the entire rigidity range the D flux exhibits nearly identical time variations with the p , He 3 , and He 4 fluxes. Above 4.5 GV, the D / He 4 flux ratio is time independent and its rigidity dependence is well described by a single power law R Δ with Δ D / He 4 = 0.108 ± 0.005 . This is in contrast with the He 3 / He 4 flux ratio for which we find Δ He 3 / He 4 = 0.289 ± 0.003 . Above 13 GV we find a nearly identical rigidity dependence of the D and p fluxes with a D / p flux ratio of 0.027 ± 0.001 . These unexpected observations indicate that cosmic deuterons have a sizable primarylike component. With a method independent of cosmic ray propagation, we obtain the primary component of the D flux equal to 9.4 ± 0.5 % of the He 4 flux and the secondary component of the D flux equal to 58 ± 5 % of the He 3 flux. Published by the American Physical Society2024  more » « less
Award ID(s):
2149809
PAR ID:
10604082
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
Physical Review Letters
Date Published:
Journal Name:
Physical Review Letters
Volume:
132
Issue:
26
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the first measurement of cosmic-ray fluxes of Li 6 and Li 7 isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on 9.7 × 10 5 Li 6 and 1.04 × 10 6 Li 7 nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity range the Li 6 and Li 7 fluxes exhibit nearly identical time variations and, above 4 GV , the time variations of Li 6 , Li 7 , He, Be, B, C, N, and O fluxes are identical. Above 7 GV , we find an identical rigidity dependence of the Li 6 and Li 7 fluxes. This shows that they are both produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular, excludes the existence of a sizable primary component in the Li 7 flux. Published by the American Physical Society2025 
    more » « less
  2. In this Letter, the first evidence of the He ¯ Λ ¯ 4 antihypernucleus is presented, along with the first measurement at the LHC of the production of (anti)hypernuclei with mass number A = 4 , specifically ( anti ) H Λ 4 and ( anti ) He Λ 4 . In addition, the antiparticle-to-particle ratios for both hypernuclei ( H ¯ Λ ¯ 4 / H Λ 4 and He ¯ Λ ¯ 4 / He Λ 4 ) are shown, which are sensitive to the baryochemical potential of the strongly interacting matter created in heavy-ion collisions. The results are obtained from a data sample of central Pb-Pb collisions, collected during the 2018 LHC data taking at a center-of-mass energy per nucleon pair of s NN = 5.02 TeV . The yields measured for the average of the charge-conjugated states are found to be [ 0.78 ± 0.19 ( stat ) ± 0.17 ( syst ) ] × 10 6 for the ( anti ) H Λ 4 and [ 1.08 ± 0.34 ( stat ) ± 0.20 ( syst ) ] × 10 6 for the ( anti ) He Λ 4 , and the measured antiparticle-to-particle ratios are in agreement with unity. The presence of ( anti ) H Λ 4 and ( anti ) He Λ 4 excited states is expected to strongly enhance the production yield of these hypernuclei. The yield values exhibit a combined deviation of 3.3 σ from the theoretical ground-state-only expectation, while the inclusion of the excited states in the calculations leads to an agreement within 0.6 σ with the present measurements. Additionally, the measured ( anti ) H Λ 4 and ( anti ) He Λ 4 masses are compatible with the world-average values within the uncertainties. © 2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
  3. We realize a magneto-optical trap (MOT) of titanium (Ti) atoms, performing laser cooling on the 498 nm transition between the long-lived 3 d 3 ( F 4 ) 4 s a 5 F 5 metastable state and the 3 d 3 ( F 4 ) 4 p y 5 G 6 o excited state. Without the addition of any repumping light, we observe MOTs of the three stable, I = 0 bosonic isotopes, Ti 46 ,   Ti 48 , and Ti 50 . Up to 8.30 ( 26 ) × 10 5 Ti 48 atoms are trapped at a maximum density of 1.3 ( 4 ) × 10 11 cm 3 and at a temperature of 90 ( 15 ) µ K . By measuring the decay of the MOT, we constrain the leakage branching ratio of the cooling transition ( 2.5 × 10 6 ) and the two-body loss coefficient ( 2 × 10 10 cm 3 s 1 ). Our approach to laser cooling Ti can be applied to other transition metals, enabling a significant expansion of the elements that can be laser cooled. Published by the American Physical Society2025 
    more » « less
  4. Anisotropic pair breaking close to surfaces favors the chiral A phase of the superfluid He 3 over the time-reversal invariant B phase. Confining the superfluid He 3 into a cavity of height D of the order of the Cooper pair size characterized by the coherence length ξ 0 —ranging between 16 nm (34 bar) and 77 nm (0 bar)—extends the surface effects over the whole sample volume, thus allowing stabilization of the A phase at pressures P and temperatures T where otherwise the B phase would be stable. In this Letter, the surfaces of such a confined sample are covered with a superfluid He 4 film to create specular quasiparticle scattering boundary conditions, preventing the suppression of the superfluid order parameter. We show that the chiral A phase is the stable superfluid phase under strong confinement over the full P T phase diagram down to a quasi-two-dimensional limit D / ξ 0 = 1 , where D = 80 nm . The planar phase, which is degenerate with the chiral A phase in the weak-coupling limit, is not observed. The gap inferred from measurements over the wide pressure range from 0.2 to 21.0 bar leads to an empirical ansatz for temperature-dependent strong-coupling effects. We discuss how these results pave the way for the realization of the fully gapped two-dimensional p x + i p y superfluid under more extreme confinement. Published by the American Physical Society2025 
    more » « less
  5. Asymptotic giant branch stars are responsible for the production of most of the heavy isotopes beyond Sr observed in the solar system. Among them, isotopes shielded from the r -process contribution by their stable isobars are defined as s -only nuclei. For a long time the abundance of Pb 204 , the heaviest s -only isotope, has been a topic of debate because state-of-the-art stellar models appeared to systematically underestimate its solar abundance. Besides the impact of uncertainties from stellar models and galactic chemical evolution simulations, this discrepancy was further obscured by rather divergent theoretical estimates for the neutron capture cross section of its radioactive precursor in the neutron-capture flow, Tl 204 ( t 1 / 2 = 3.78 yr ), and by the lack of experimental data on this reaction. We present the first ever neutron capture measurement on Tl 204 , conducted at the CERN neutron time-of-flight facility n_TOF, employing a sample of only 9 mg of Tl 204 produced at the Institute Laue Langevin high flux reactor. By complementing our new results with semiempirical calculations we obtained, at the s -process temperatures of k T 8 keV and k T 30 keV , Maxwellian-averaged cross sections (MACS) of 580(168) mb and 260(90) mb, respectively. These figures are about 3% lower and 20% higher than the corresponding values widely used in astrophysical calculations, which were based only on theoretical calculations. By using the new Tl 204 MACS, the uncertainty arising from the Tl 204 ( n , γ ) cross section on the s -process abundance of Pb 204 has been reduced from 30 % down to + 8 % / 6 % , and the s -process calculations are in agreement with the latest solar system abundance of Pb 204 reported by K. Lodders in 2021. Published by the American Physical Society2024 
    more » « less