skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Full color visible imaging with crystalline silicon meta-optics
Abstract Silicon is a common material of choice for semiconductor optics in the infrared spectral range, due to its low cost, well-developed high-volume manufacturing methods, high refractive index, and transparency. It is, however, typically ill-suited for applications in the visible range, due to its large absorption coefficient, especially for green and blue light. Counterintuitively, we demonstrate how ultra-thin crystalline meta-optics enable full-color imaging in the visible range. For this purpose, we employ an inverse design approach, which maximizes the volume under the broadband modulation transfer function of the meta-optics. Beyond that, we demonstrate polarization-multiplexed functionality in the visible. This is particularly important as polarization optics require high index materials, a characteristic often difficult to obtain in the visible.  more » « less
Award ID(s):
2127235 2120774
PAR ID:
10606641
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
14
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dielectric metasurfaces, composed of planar arrays of subwavelength dielectric structures that collectively mimic the operation of conventional bulk optical elements, have revolutionized the field of optics by their potential in constructing high-efficiency and multi-functional optoelectronic systems on chip. The performance of a dielectric metasurface is largely determined by its constituent material, which is highly desired to have a high refractive index, low optical loss and wide bandgap, and at the same time, be fabrication friendly. Here, we present a new material platform based on tantalum pentoxide (Ta2O5) for implementing high-performance dielectric metasurface optics over the ultraviolet and visible spectral region. This wide-bandgap dielectric, exhibiting a high refractive index exceeding 2.1 and negligible extinction coefficient across a broad spectrum, can be easily deposited over large areas with good quality using straightforward physical vapor deposition, and patterned into high-aspect-ratio subwavelength nanostructures through commonly-available fluorine-gas-based reactive ion etching. We implement a series of high-efficiency ultraviolet and visible metasurfaces with representative light-field modulation functionalities including polarization-independent high-numerical-aperture lensing, spin-selective hologram projection, and vivid structural color generation, and the devices exhibit operational efficiencies up to 80%. Our work overcomes limitations faced by scalability of commonly-employed metasurface dielectrics and their operation into the visible and ultraviolet spectral range, and provides a novel route towards realization of high-performance, robust and foundry-manufacturable metasurface optics. 
    more » « less
  2. Abstract Endoscopes are an important component for the development of minimally invasive surgeries. Their size is one of the most critical aspects, because smaller and less rigid endoscopes enable higher agility, facilitate larger accessibility, and induce less stress on the surrounding tissue. In all existing endoscopes, the size of the optics poses a major limitation in miniaturization of the imaging system. Not only is making small optics difficult, but their performance also degrades with downscaling. Meta-optics have recently emerged as a promising candidate to drastically miniaturize optics while achieving similar functionalities with significantly reduced size. Herein, we report an inverse-designed meta-optic, which combined with a coherent fiber bundle enables a 33% reduction in the rigid tip length over traditional gradient-index (GRIN) lenses. We use the meta-optic fiber endoscope (MOFIE) to demonstrate real-time video capture in full visible color, the spatial resolution of which is primarily limited by the fiber itself. Our work shows the potential of meta-optics for integration and miniaturization of biomedical devices towards minimally invasive surgery. 
    more » « less
  3. Extended depth of focus (EDOF) optics can enable lower complexity optical imaging systems when compared to active focusing solutions. With existing EDOF optics, however, it is difficult to achieve high resolution and high collection efficiency simultaneously. The subwavelength spacing of scatterers in a meta-optic enables the engineering of very steep phase gradients; thus, meta-optics can achieve both a large physical aperture and a high numerical aperture. Here, we demonstrate a fast ( f / 1.75 ) EDOF meta-optic operating at visible wavelengths, with an aperture of 2 mm and focal range from 3.5 mm to 14.5 mm (286 diopters to 69 diopters), which is a 250 × elongation of the depth of focus relative to a standard lens. Depth-independent performance is shown by imaging at a range of finite conjugates, with a minimum spatial resolution of 9.84    μm (50.8 cycles/mm). We also demonstrate operation of a directly integrated EDOF meta-optic camera module to evaluate imaging at multiple object distances, a functionality which would otherwise require a varifocal lens. 
    more » « less
  4. Abstract Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12μm). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) surface of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging. 
    more » « less
  5. Chirality is a geometric property describing the lack of mirror symmetry. This unique feature enables photonic spin-selectivity in light–matter interaction, which is of great significance in stereochemistry, drug development, quantum optics, and optical polarization control. The versatile control of optical geometry renders optical metamaterials as an effective platform for engineered chiral properties at prescribed spectral regimes. Unfortunately, geometry-imposed restrictions only allow one circular polarization state of photons to effectively interact with chiral meta-structures. This limitation motivates the idea of discovering alternative techniques for dynamically reconfiguring the chiroptical responses of metamaterials in a fast and facile manner. Here, we demonstrate an approach that enables optical, sub-picosecond conversion of achiral meta-structures to transient chiral media in the visible regime with desired handedness upon the inhomogeneous generation of plasmonic hot electrons. As a proof of concept, we utilize linearly polarized laser pulse to demonstrate near-complete conversion of spin sensitivity in an achiral meta-platform—a functionality yet achieved in a non-mechanical fashion. Owing to the generation, diffusion, and relaxation dynamics of hot electrons, the demonstrated technique for all-optical creation of chirality is inherently fast, opening new avenues for ultrafast spectro-temporal construction of chiral platforms with on-demand spin-selectivity. 
    more » « less