Impedance-matching networks affect power transfer from the radio frequency (RF) chains to the antennas. Their design impacts the signal to noise ratio (SNR) and the achievable rate. In this paper, we maximize the information-theoretic achievable rate of a multiple-input-single-output (MISO) system with wideband matching constraints. Using a multiport circuit theory approach with frequency-selective scattering parameters, we propose a general framework for optimizing the MISO achievable rate that incorporates Bode-Fano wideband matching theory. We express the solution to the achievable rate optimization problem in terms of the optimized transmission coefficient and the Lagrangian parameters corresponding to the Bode-Fano inequality constraints. We apply this framework to a single electric Chu’s antenna and an array of dipole antennas. We compare the optimized achievable rate obtained numerically with other benchmarks like the ideal achievable rate computed by disregarding matching constraints and the achievable rate obtained by using sub-optimal matching strategies like conjugate matching and frequency-flat transmission. We also propose a practical methodology to approximate the achievable rate bound by using the optimal transmission coefficient to derive a physically realizable matching network through the ADS software.
more »
« less
Purcell Enhancement of a Single T Center Coupled to a Silicon Nanophotonic Cavity
We demonstrate Purcell enhancement of a single T center integrated in a silicon photonic crystal cavity, increasing the fluorescence decay rate by a factor of 6.89 and achieving a photon outcoupling rate of 73.3 kHz.
more »
« less
- Award ID(s):
- 2238298
- PAR ID:
- 10607906
- Publisher / Repository:
- Optica Publishing Group
- Date Published:
- ISBN:
- 978-1-957171-39-5
- Page Range / eLocation ID:
- FTu3I.1
- Format(s):
- Medium: X
- Location:
- Charlotte, North Carolina
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Serverless (or Function-as-a-Service) compute model enables new applications with dynamic scaling. However, all current Serverless systems are best-effort, and as we prove this means they cannot guarantee hard real-time deadlines, rendering them unsuitable for such real-time applications. We analyze a proposed extension of the Serverless model that adds a guaranteed invocation rate to the serverless model called Real-time Serverless. This approach aims to meet real-time deadlines with dynamically allocated function invocations. We first prove that the Serverless model does not support real-time guarantees. Next, we analyze Real-time Serverless, showing it can guarantee application real-time deadlines for rate-monotonic real-time workloads. Further, we derive bounds on the required invocation rate to meet any set of workload runtimes and periods. Subsequently, we explore an application technique, pre-invocation, and show that it can reduce the required guaranteed invocation rate. We derive bounds for the feasible rate guarantee reduction, and corresponding overhead in wasted compute resources. Finally, we apply the theoretical results to improve the experience quality of a distributed virtual reality/ augmented reality application as well as simplify the application design and resource management.more » « less
-
This paper unifies commonly used accelerated stochastic gradient methods (Polyak’s Heavy Ball, Nesterov’s Accelerated Gradient and Adaptive Moment Estimation (Adam)) as specific cases of a general lowpass regularized learning framework, the Automatic Stochastic Gradient Method (AutoSGM). For AutoSGM, we derive an optimal iteration-dependent learning rate function and realize an approximation. Adam is also an approximation of this optimal approach that replaces the iteration-dependent learning-rate with a constant. Empirical results on deep neural networks comparing the learning behavior of AutoSGM equipped with this iteration-dependent learning-rate algorithm demonstrate fast learning behavior, robustness to the initial choice of the learning rate, and can tune an initial constant learning-rate in applications where a good constant learning rate approximation is unknown.more » « less
-
In recent years it has become increasingly popular to use phylogenetic comparative methods to investigate heterogeneity in the rate or process of quantitative trait evolution across the branches or clades of a phylogenetic tree. Here, I present a new method for modeling variability in the rate of evolution of a continuously-valued character trait on a reconstructed phylogeny. The underlying model of evolution is stochastic diffusion (Brownian motion), but in which the instantaneous diffusion rate (σ 2 ) also evolves by Brownian motion on a logarithmic scale. Unfortunately, it’s not possible to simultaneously estimate the rates of evolution along each edge of the tree and the rate of evolution of σ 2 itself using Maximum Likelihood. As such, I propose a penalized-likelihood method in which the penalty term is equal to the log-transformed probability density of the rates under a Brownian model, multiplied by a ‘smoothing’ coefficient, λ, selected by the user. λ determines the magnitude of penalty that’s applied to rate variation between edges. Lower values of λ penalize rate variation relatively little; whereas larger λ values result in minimal rate variation among edges of the tree in the fitted model, eventually converging on a single value of σ 2 for all of the branches of the tree. In addition to presenting this model here, I have also implemented it as part of my phytools R package in the function multirateBM . Using different values of the penalty coefficient, λ, I fit the model to simulated data with: Brownian rate variation among edges (the model assumption); uncorrelated rate variation; rate changes that occur in discrete places on the tree; and no rate variation at all among the branches of the phylogeny. I then compare the estimated values of σ 2 to their known true values. In addition, I use the method to analyze a simple empirical dataset of body mass evolution in mammals. Finally, I discuss the relationship between the method of this article and other models from the phylogenetic comparative methods and finance literature, as well as some applications and limitations of the approach.more » « less
-
The mutation rate and mutations' effects on fitness are crucial to evolution. Mutation rates are under selection due to linkage between mutation rate modifiers and mutations' effects on fitness. The linkage between a higher mutation rate and more beneficial mutations selects for higher mutation rates, while the linkage between a higher mutation rate and more deleterious mutations selects for lower mutation rates. The net direction of selection on mutations rates depends on the fitness landscape, and a great deal of work has elucidated the fitness landscapes of mutations. However, tests of the effect of varying a mutation rate on evolution in a single organism in a single environment have been difficult. This has been studied using strains of antimutators and mutators, but these strains may differ in additional ways and typically do not allow for continuous variation of the mutation rate. To help investigate the effects of the mutation rate on evolution, we have genetically engineered a strain of E. coli with a point mutation rate that can be smoothly varied over two orders of magnitude. We did this by engineering a strain with inducible control of the mismatch repair proteins MutH and MutL. We used this strain in an approximately 350 generation evolution experiment with controlled variation of the mutation rate. We confirmed the construct and the mutation rate were stable over this time. Sequencing evolved strains revealed a higher number of single nucleotide polymorphisms at higher mutations rates, likely due to either the beneficial effects of these mutations or their linkage to beneficial mutations.more » « less
An official website of the United States government

