Abstract In this study, we diagnose the spatial variability in the energetics of tidally generated diurnal, semidiurnal, and supertidal ( cycles per day) internal wave vertical modes (up to mode 6) in a 30‐day forward global ocean model simulation with a 4‐km grid spacing and 41 layers. The simulation is forced with realistic tides and atmospheric fields. Diurnal modes are resolved beyond mode 6, semidiurnal modes are resolved up to mode 4, and supertidal modes are resolved up to mode 2, in agreement with a canonical horizontal resolution criterion. The meridional trends in the kinetic to available potential energy ratios of these resolved modes agree with an internal wave consistency relation. The supertidal band is dominated by the higher harmonics of the diurnal and semidiurnal tides. Its higher harmonic energy projects on the internal wave dispersion curves in frequency‐wavenumber spectra and is captured mostly by the terdiurnal and quarterdiurnal mode‐1 waves. Terdiurnal modes are mostly generated in the west Pacific, where diurnal internal tides are strong. In contrast, quarterdiurnal modes occur at all longitudes near strong semidiurnal generation sites. The globally integrated energy in the supertidal band is about one order of magnitude smaller than the energy in the tidal band. The supertidal energy as a fraction of the tidal energy is elevated along semidiurnal internal wave beams in the tropics. We attribute this to near‐resonant interactions between tidal modes of the same mode number. 
                        more » 
                        « less   
                    
                            
                            Nonlinear Internal Tides in a Realistically Forced Global Ocean Simulation
                        
                    
    
            Abstract The decay of the low‐mode internal tide due to the superharmonic energy cascade is investigated in a realistically forced global Hybrid Coordinate Ocean Model simulation with 1/25° (4 km) horizontal grid spacing. Time‐mean and depth‐integrated supertidal kinetic energy is found to be largest near low‐latitude internal tide generation sites, such as the Bay of Bengal, Amazon Shelf, and Mascarene Ridge. The supertidal kinetic energy can make up to 50% of the total internal tide kinetic energy several hundred kilometers from the generation sites. As opposed to the tidal flux divergence, the supertidal flux divergence does not correlate with the barotropic to baroclinic energy conversion. Instead, the time‐mean and depth‐integrated supertidal flux divergence correlates with the nonlinear kinetic energy transfers from (sub)tidal to supertidal frequency bands as estimated with a novel coarse‐graining approach. The regular spaced banding patterns of the surface‐intensified nonlinear energy transfers are attributed to semidiurnal mode 1 and mode 2 internal waves that interfere constructively at the surface. This causes patches where both surface tidal kinetic energy and nonlinear energy transfers are elevated. The simulated internal tide off the Amazon Shelf steepens significantly near these patches, generating solitary‐like waves in good agreement with Synthetic Aperture Radar imagery. Globally, we find that regions of high supertidal energy flux also show a high correlation with observed instances of internal solitary waves. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1851164
- PAR ID:
- 10607961
- Publisher / Repository:
- American Geophysical Union/Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 128
- Issue:
- 12
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The internal wave (IW) continuum of a regional ocean model is studied in terms of the vertical spectral kinetic energy (KE) fluxes and transfers at high vertical wavenumbers. Previous work has shown that this model permits a partial representation of the IW cascade. In this work, vertical spectral KE flux is decomposed into catalyst, source, and destination vertical modes and frequency bands of nonlinear scattering, a framework that allows for the discernment of different types of nonlinear interactions involving both waves and eddies. Energy transfer within the supertidal IW continuum is found to be strongly dependent on resolution. Specifically, at a horizontal grid spacing of 1/48°, most KE in the supertidal continuum arrives there from lower-frequency modes through a single nonlinear interaction, whereas at 1/384° and with sufficient vertical resolution KE transfers within the supertidal IW continuum are comparable in size to KE transfer from lower-frequency modes. Additionally, comparisons are made with existing theoretical and observational work on energy pathways in the IW continuum. Induced diffusion (ID) is found to be associated with a weak forward frequency transfer within the supertidal IW continuum. ID is also limited to the highest vertical wavenumbers and is more sensitive to resolution relative to spectrally local interactions. At the same time, ID-like processes involving high-vertical-wavenumber near-inertial and tidal waves as well as low-vertical-wavenumber eddy fields are substantial, suggesting that the processes giving rise to a Garrett–Munk-like spectra in the present numerical simulation and perhaps the real ocean may be more varied than in idealized or wave-only frameworks.more » « less
- 
            An internal tide model, ZHAO30yr, is developed using 30 years of satellite altimetry sea surface height (SSH) measurements from 1993 to 2022 by a recently improved mapping technique that consists of two rounds of plane wave analysis with a spatial bandpass filter in between. Prerequisite wavelengths are calculated using climatological annual mean hydrographic profiles in the World Ocean Atlas 2018. ZHAO30yr only extracts the 30-year phase-locked internal tide component, lacking the incoherent component caused by the time-varying ocean environment. The model contains 12 internal tide constituents: eight mode-1 constituents (M2, S2, N2, K2, K1, O1, P1, and Q1) and four mode-2 constituents (M2, S2, K1, and O1). Model errors are estimated to be lower than 1 mm in the SSH amplitude on global average, thanks to the long data record and improved mapping technique. The model is evaluated by making internal tide correction to independent altimetry data for 2023. A total of 10 constituents (but for K2 and Q1) can reduce variance on global average. K2 and Q1 can only cause variance reductions in their source regions. The model decomposes the multiconstituent, multimodal, multidirectional internal tide field into a series of simple plane waves at each grid point. The decomposition reveals unprecedented features previously masked by multiwave interference. The model divides each internal tide constituent into components by propagation direction. The directionally decomposed components show numerous long-range internal tidal beams associated with notable topographic features. The semidiurnal internal tidal beams off the Amazon shelf and the diurnal internal tidal beams in the Arabian Sea are examined in detail. ZHAO30yr is available at https://doi.org/10.6084/m9.figshare.28078523 (Zhao, 2024b). Model errors are available at https://doi.org/10.6084/m9.figshare.28559978.v3 (Zhao, 2025).more » « less
- 
            Abstract The generation of internal tides at coastal margins is an important mechanism for the loss of energy from the barotropic tide. Although some previous studies attempted to quantify energy loss from the barotropic tides into the deep ocean, global estimates are complicated by the coastal geometry and spatially and temporally variable stratification. Here, we explore the effects of supercritical, finite amplitude bottom topography, which is difficult to solve analytically. We conduct a suite of 2D linear numerical simulations of the barotropic tide interacting with a uniform alongshore coastal shelf, representing the tidal forcing by a body force derived from the vertical displacement of the isopycnals by the gravest coastal trapped wave (of which a Kelvin wave is a close approximation). We explore the effects of latitude, topographic parameters, and nonuniform stratification on the baroclinic tidal energy flux propagating into the deep ocean away from the shelf. By varying the pycnocline depth and thickness, we extend previous studies of shallow and infinitesimally thin pycnoclines to include deep permanent pycnoclines. We find that scaling laws previously derived in terms of continental shelf width and depth for shallow and thin pycnoclines generally hold for the deeper and thicker pycnoclines considered in this study. We also find that baroclinic tidal energy flux is more sensitive to topographic than stratification parameters. Interestingly, we find that the slope of the shelf itself is an important parameter but not the width of the continental slope in the case of these steep topographies. Significance StatementThe objective of this study is to better understand how vertical density stratification, which can vary seasonally in the ocean, affects the interaction of tides with steep coastal topography and the generation of waves that travel away from the coast in the ocean interior. These waves in the interior can travel over long distances, carrying energy offshore into the deep ocean. Our results suggest that the amount of energy in these internal waves is more sensitive to changes in topography and latitude than to the vertical density profile. The scaling laws found in this study suggest which parameters are important for calculating global estimates of the energy lost from the tide to the ocean interior at the coastal margins.more » « less
- 
            Abstract The M2internal tides in the northeastern South China Sea are studied using satellite altimeter data from 1992–2018. By an improved mapping technique that combines plane wave analysis and two‐dimensional spatial filtering, multiple internal tides are separately extracted with weak internal tides becoming detectable. The satellite results reveal for the first time a 300‐km‐long southward M2internal tidal beam in the northeastern South China Sea. The generation source is on the steep continental slope at the southern entrance to the Taiwan Strait. It ranges from 118–120°E along 22°N. Combining satellite‐observed internal solitary waves and internal tides, it is found that the onshore radiation evolves into nonlinear solitary waves and the offshore radiation in the form of linear internal tides. Based on the 26‐year‐coherent satellite results, the integrated southward energy flux is 0.18 GW, about 10% of the westward energy flux from the Luzon Strait. In the northeastern South China Sea, the westward and southward internal tides form a multiwave interference field, which features significant spatial variations in the magnitude and direction of energy flux. Further analyses reveal that the steep continental slope radiates southward semidiurnal M2and S2internal tides, but not diurnal K1and O1internal tides.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    