skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cyanobiphenyl-based liquid crystal dimers and the twist-bend nematic phase: on the role played by the length and parity of the spacer
Six members of the 1,ω-bis(4-cyanobiphenyl-4′-yl) alkanes are reported and referred to as CBnCB in which n = 1, 15, 16, 17, 19 and 20 and indicates the number of methylene units in the spacer separating the two cyanobiphenyl units. The behaviour of CB3CB is revisited. The temperature dependence of the refractive indices, optical birefringence, and dielectric permittivities measured in the nematic, N, phase for selected homologues are reported. The dimers with n ≥ 15 showed an enantiotropic N phase, and for the odd members the twist-bend nematic, NTB, phase was observed. CB3CB shows a direct NTB-isotropic, I, transition whereas for CB1CB a virtual NTB-I transition is found. The temperature dependence of the bend elastic constant, K33, measured in the oblique helicoidal cholesteric state formed by mixtures of CBnCB with a chiral additive S811, shows strong non-monotonous behaviour with a deep minimum near the transition point to the NTB phase. The minimum value of K_33 decreases as n increases. The long even members of the CBnCB series show similar values of TNI to their odd-membered counterparts but their estimated values of TNTBN are considerably lower. This is attributed to molecular shape and its effect on K33.  more » « less
Award ID(s):
2215191
PAR ID:
10608076
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Taylor&Francis
Date Published:
Journal Name:
Liquid Crystals
Volume:
51
Issue:
8-9
ISSN:
0267-8292
Page Range / eLocation ID:
1446 to 1470
Subject(s) / Keyword(s):
Twist-bend nematic
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In high-resolution adiabatic scanning calorimetry (ASC) experiments, data for the temperature dependence of the specific enthalpy, h(T), and of the specific heat capacity, c(p)(T), are simultaneously obtained, from which the order of the phase transition and critical behaviour can be evaluated. ASC was applied to study the nematic to ferroelectric nematic phase transition (N-N-F) in the liquid crystal molecule 4-[(4-nitrophenoxy)carbonyl]phenyl 2,4-dimethoxybenzoate (RM734). The N-N-F was found to be very weakly first order with a latent heat Delta h = 0.115 +/- 0.005 J/g. The pretransitional specific heat capacity behaviour is substantially larger in the high-temperature N phase than in the low-temperature N-F phase. In both phases the power-law analysis of c(p)(T) resulted in a critical exponent alpha = 0.50 +/- 0.05 and amplitude ratio A(NF)/A(N) = 0.42 +/- 0.03. The very small latent heat and the value of alpha indicate that the N-N-F transition is close to a tricritical point. This is confirmed by a value of the order parameter exponent beta approximate to 0.25, recently obtained from electric polarisation measurements. Invoking two-scale-factor universality, it follows from the low value of A(NF)/A(N) ratio that the size of the critical fluctuations is much larger in the N-F phase than in the N phase. 
    more » « less
  2. Elastic constants of splay K_11, twist K_22, and bend K_33 of nematic liquid crystals are often assumed to be equal to each other in order to simplify the theoretical description of complex director fields. Here we present examples of how the disparity of K_11 and K_33 produces effects that cannot be described in a one-constant approximation. In a lyotropic chromonic liquid crystal, nematic droplets coexisting with the isotropic phase change their shape from a simply-connected tactoid to a topologically distinct toroid as a result of temperature or concentration variation. The transformation is caused by the increase of the splay-to-bend ratio K_11/K_33. A phase transition from a conventional nematic to a twist-bend nematic implies that the ratio K_11/K_33 changes from very large to very small. As a result, the defects caused by an externally applied electric field change the deformation mode of optic axis from bend to splay. In the paraelectric-ferroelectric nematic transition, one finds an inverse situation: K_11/K_33 changes from small to large, which shapes the domain walls in the spontaneous electric polarization field as conic sections. The polarization field tends to be solenoidal, or divergence-free, a behavior complementary to irrotational curl-free director textures of a smectic A. 
    more » « less
  3. Most of the current highly polar rod-shaped molecules that form ferroelectric nematic (NF) phase do so only at elevated temperatures and multicomponent mixtures are generally needed to obtain a broad and room temperature range NF phase. In this work, we describe the synthesis, phase characterization and measurement of various physical properties of a new ferroelectric nematic compound 4-[(4-nitrophenoxy)carbonyl]phenyl 2-isopropoxy-4-methoxybenzoate (RT11165). The molecular structure of RT11165 with a 2-isopropoxy group differs only by a substitution of the 2-methoxy group found in the prototype ferroelectric nematic material 4-[(4-nitrophenoxy)carbonyl]phenyl 2,4-dimethoxybenzoate (RM734). This small structure change produces a rather dramatic change in phase behavior leading to an NF phase from 63 °C down to room temperature. Below about 45°C the rotational viscosity of RT11165 increases critically and the temperature dependence indicates a glass transition at ~19°C. The transparent and polar glassy state of RT11165, which should be also piezoelectric, is a good candidate for energy storage, piezoecatalysis, data storage and other applications. 
    more » « less
  4. We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable polarization locally parallel to the director. This polarization density saturates at a low temperature value of ∼6 µC/cm 2 , the largest ever measured for a fluid or glassy material. This polarization is comparable to that of solid state ferroelectrics and is close to the average value obtained by assuming perfect, polar alignment of molecular dipoles in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultralow applied field (E ∼ 1 V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean field-like and weakly first order and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative, new nematic physics, chemistry, and applications based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction. 
    more » « less
  5. Khoo, Iam Choon (Ed.)
    We explore the structures and confinement-induced edge dislocations in Grandjean-Cano wedge cells filled with the recently discovered chiral ferroelectric nematic (N_F^*) and chiral antiferroelectric smectic-Z 〖(SmZ〗_A^*). The chiral mixture is formed by DIO mesogen doped with a chiral additive. Wedge cells with parallel and antiparallel rubbing at the opposite plates show quantitatively different structures which is attributed to the polar in-plane anchoring of the spontaneous polarization at the rubbed substrates. The helical pitch shows a non-monotonous temperature dependence upon cooling, increasing as the temperature is lowered to the N^*-SmZ_A^* phase transition. The SmZ_A^* formed from an untwisted N^* in the thin portion of the wedge shows a bookshelf (BK) geometry, whereas the twisted N^* transforms into a twisted planar (PA) SmZ_A^* structure. In the N_F^* phase, the untwisted N^* becomes twisted in a wedge with antiparallel assembly of plates and monodomain in wedges with parallel assembly. The twisted regions of N_F^* show only one type of Grandjean zones separated by thick edge dislocations with Burgers vector b=P; the neighboring regions differ by 2π- twist. 
    more » « less