skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proglacial Lake Drainage Events Drive Fast Grounding Line Advance in a Warming Climate
Abstract Proglacial lakes along the retreating margin of the Laurentide ice sheet (LIS) significantly influenced the ice sheet's dynamics. This study investigates the interaction between proglacial lake drainage events and ice sheet evolution during deglaciation. Using a flowline ice sheet model, we demonstrate that abrupt lake drainage caused by the opening of spillways during the retreat of the ice sheet can temporarily reverse ice retreat and trigger rapid grounding line advance despite ongoing climate warming. We also show that ice shelf regrounding on a retrograde lake bed can follow lake drainage and further amplify ice sheet advance. These processes can decouple ice dynamics from climate forcing, offering a non‐climatic mechanism to explain the observed highly irregular ice margin fluctuations of the LIS. Our findings suggest that proglacial lakes might play an important role in modulating ice sheet evolution in warming climates.  more » « less
Award ID(s):
2218463
PAR ID:
10608285
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
8
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As ice sheets load Earth's surface, they produce ice‐marginal depressions which, when filled with meltwater, become proglacial lakes. We include self‐consistently evolving proglacial lakes in a glacial isostatic adjustment (GIA) model and apply it to the Laurentide ice sheet over the last glacial cycle. We find that the locations of modeled lakes and the timing of their disappearance is consistent with the geological record. Lake loads can deflect topography by >10 m, and volumes collectively approach 30–45 cm global mean sea‐level equivalent. GIA increases deglaciation‐phase lake volume up to five‐fold and average along‐ice‐margin depth ≤90 m compared to glaciation‐phase ice volume analogs—differences driven by changes in the position and size of the peripheral bulge. Since ice‐marginal lake depth affects grounding‐line outflow, GIA‐modulated proglacial lake depths could affect ice‐sheet mass loss. Indeed, we find that Laurentide ice‐margin retreat rate sometimes correlates with proglacial lake presence, indicating that proglacial lakes aid glacial collapse. 
    more » « less
  2. The deglaciation record of the Ontario Lowland and Mohawk Valley of North America is important for constraining the retreat history of the Laurentide Ice Sheet, end-Pleistocene paleoclimate, and ice-sheet processes. The Mohawk Valley was an important meltwater drainage route during the last deglaciation, with the area around modern Oneida Lake acting as a valve for meltwater discharge into the North Atlantic Ocean. The Mohawk Valley was occupied by the Oneida Lobe and Oneida Ice Stream during the last deglacial period. Multichannel seismic reflection data can be used to generate images of preglacial surfaces and internal structures of glacial bedforms and proglacial lake deposits, thus contributing to studies of deglaciation. This paper uses 217 km of offshore multichannel seismic reflection data to image the entire Quaternary section of the Oneida basin. A proglacial lake and paleo-calving margin is interpreted, which likely accelerated the Oneida Ice Stream, resulting in elongated bedforms observed west of the lake. The glacial bedforms identified in this study are buried by proglacial lake deposits, indicating the Oneida basin contains a record of glacial meltwater processes, including a 60-m-thick proglacial interval in eastern Oneida Lake. 
    more » « less
  3. Abstract. The Greenland Ice Sheet's negative mass balance is driven by a sensitivity to both a warming atmosphere and ocean. The fidelity of ice-sheet models in accounting for ice-ocean interaction is inherently uncertain and often constrained against recent fluctuations in the ice-sheet margin from the previous decades. The geological record can be utilised to contextualise ice-sheet mass loss and understand the drivers of changes at the marine margin across climatic shifts and previous extended warm periods, aiding our understanding of future ice-sheet behaviour. Here, we use the Ice-sheet and Sea-level System Model (ISSM) to explore the Holocene evolution of Ryder Glacier draining into Sherard Osborn Fjord, Northern Greenland. Our modelling results are constrained with terrestrial reconstructions of the paleo-ice sheet margin and an extensive marine sediment record from Sherard Osborn Fjord that details ice dynamics over the past 12.5 ka years. By employing a consistent mesh resolution of <1 km at the ice-ocean boundary, we assess the importance of atmospheric and oceanic changes to Ryder Glacier's Holocene behaviour. Our simulations show that the initial retreat of the ice margin after the Younger Dryas cold period was driven by a warming climate and the resulting fluctuations in Surface Mass Balance. Changing atmospheric conditions remain the first order control in the timing of ice retreat during the Holocene. We find ice-ocean interactions become increasingly fundamental to Ryder's retreat in the mid-Holocene; with higher than contemporary melt rates required to force grounding line retreat and capture the collapse of the ice tongue during the Holocene Thermal Maximum. Regrowth of the tongue during the neo-glacial cooling of the late Holocene is necessary to advance both the terrestrial and marine margins of the glacier. Our results stress the importance of accurately resolving the ice-ocean interface in modelling efforts over centennial and millennial time scales, in particular the role of floating ice tongues and submarine melt, and provide vital analogous for the future evolution of Ryder in a warming climate. 
    more » « less
  4. Abstract Ice streams are sites of ice-sheet drainage and together with other processes, such as calving, have an impact on deglaciation rates and ice-sheet mass balance. Proglacial lake deposits provide records of ice-sheet deglaciation and have the potential to supplement other paleoclimate records. Oneida Lake, northeastern USA, contains a thick proglacial lake sequence that buries evidence of ice streaming and a paleo-calving margin that developed during retreat of the Laurentide Ice Sheet. Previous high-resolution digital elevation models identified the Oneida Ice Stream from glacial landforms northwest of the lake. In this study, we utilize seismic refractions from a multichannel seismic (MCS) reflection dataset to estimate the thickness of glacial deposits using seismic tomography. With this method we constrain the depth to top of Paleozoic strata, especially in areas where the reflection data yielded poor outcomes and validate our reflection data in regions of good coverage. We demonstrate that where long offset seismic data are available, the first-arrival tomography method is useful in studies of formerly glaciated basins. Our study identifies a ~108 m thick sedimentary section and potentially long paleoclimate record in Oneida Lake, and identifies a paleotopographic low that likely encouraged formation of the Oneida Ice Stream. 
    more » « less
  5. Supraglacial lakes form on the surface of the Greenland Ice Sheet during the summer months and can directly impact ice sheet mass balance by removing mass via drainage and runoff or indirectly impact mass balance by influencing ice sheet dynamics. Here, we utilize the growing inventory of optical and microwave satellite imagery to automatically determine the fate of Greenland-wide supraglacial lakes during 2018 and 2019, a cool and warm melt season respectively. We use a machine learning time series classification approach to categorize lakes into four different categories: lakes that 1) refreeze, 2) rapidly drain, 3) slowly drain, and 4) become buried lakes at the end of the melt season. We find that during the warmer 2019, not only was the number of lake drainage events higher than in 2018, but also the proportion of lakes that drained was greater. By investigating mean lake depths for these four categories, we show that drained lakes were, on average, 22% deeper than lakes that refroze or became buried lakes. Interestingly, drained lakes had approximately the same maximum depth in 2018 and 2019; however, lakes that did not drain were 29% deeper in 2018, a cooler year. Our unique two-year dataset describing the fate of every Greenland supraglacial lake provides novel insight into lake drainage and refreeze in a relatively warm and cool year, which may be increasingly relevant in a warming climate. 
    more » « less