skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 3, 2026

Title: Data-constrained Magnetohydrodynamic Simulation for Magnetic Flux Rope Eruptions Driven by Magnetic Reconnection
Abstract We conducted data-constrained magnetohydrodynamic (MHD) simulations for solar active region (AR) NOAA AR 11429, which produced two X-class flares within a span of 63 minutes. The simulations were performed using the zero-βMHD approximation, with the initial condition derived from the nonlinear force-free field extrapolated from the photospheric magnetograms taken 2 hr before the first X5.4 flare. During the simulation, we enhanced magnetic reconnection locally by applying anomalous resistivity in the induction equation within the regions of interest. As a result, the simulations successfully reproduced the expansion of two magnetic flux ropes (MFRs) corresponding to the two observed eruptions. The result shows that the difference in stability between the two MFRs is related to the location of the magnetic reconnection that triggers the solar eruptions. Furthermore, comparison with the analysis of failed MFR eruptions indicates that both the initiation reconnection and the subsequent driving mechanism, torus instability, are equally important for a successful eruption. This simulation reveals a new mechanism in which long loops, formed via tether-cutting reconnection, push up the overlying twisted field lines, leading to their destabilization by torus instability.  more » « less
Award ID(s):
2204384
PAR ID:
10608314
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
983
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigated the initiation and the evolution of an X7.1-class solar flare observed in NOAA Active Region 13842 on 2024 October 1, based on a data-constrained magnetohydrodynamic (MHD) simulation. The nonlinear force-free field (NLFFF) extrapolated from the photospheric magnetic field about 1 hr before the flare was used as the initial condition for the MHD simulations. The NLFFF reproduces highly sheared field lines that undergo tether-cutting reconnection in the MHD simulation, leading to the formation of a highly twisted magnetic flux rope (MFR), which then erupts rapidly, driven by both torus instability and magnetic reconnection. This paper focuses on the dynamics of the MFR and its role in eruptions. We find that magnetic reconnection in the preeruption phase is crucial in the subsequent eruption driven by the torus instability. Furthermore, our simulation indicates that magnetic reconnection also directly enhances the torus instability. These results suggest that magnetic reconnection is not just a by-product of the eruption due to reconnecting of postflare arcade, but also plays a significant role in accelerating the MFR during the eruption. 
    more » « less
  2. Context.Erupting magnetic flux ropes (MFRs) are believed to play a crucial role in producing solar flares. However, the formation of erupting MFRs in complex coronal magnetic configurations and the role of their subsequent evolution in the flaring events are not fully understood. Aims.We perform a magnetohydrodynamic (MHD) simulation of active region NOAA 12241 to understand the formation of a rising magnetic flux rope during the onset of an M6.9 flare on 2014 December 18 around 21:41 UT (SOL2014-12- 18T21:41M6.9), which was followed by the appearance of parallel flare ribbons. Methods.The MHD simulation was initialised with an extrapolated non-force-free magnetic field generated from the photospheric vector magnetogram of the active region taken a few minutes before the flare. Results.The initial magnetic field topology displays a pre-existing sheared arcade enveloping the polarity inversion line. The simulated dynamics exhibit the movement of the oppositely directed legs of the sheared arcade field lines towards each other due to the converging Lorentz force, resulting in the onset of tether-cutting magnetic reconnection that produces an underlying flare arcade and flare ribbons. Concurrently, a magnetic flux rope above the flare arcade develops inside the sheared arcade and shows a rising motion. The flux rope is found to be formed in a torus-unstable region, thereby explaining its eruptive nature. Interestingly, the location and rise of the rope are in good agreement with the corresponding observations seen in extreme-ultraviolet channels of the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO). Furthermore, the foot points of the simulation’s flare arcade match well with the location of the observed parallel ribbons of the flare. Conclusions.The presented simulation supports the development of the MFR by the tether-cutting magnetic reconnection inside the sheared coronal arcade during flare onset. The MFR is then found to extend along the polarity inversion line (PIL) through slip-running reconnection. The MFR’s eruptive nature is ascribed both to its formation in the torus-unstable region and also to the runaway tether-cutting reconnection. 
    more » « less
  3. Abstract In order to bridge the gap between heliospheric and solar observations of coronal mass ejections (CMEs), one of the key steps is to improve the understanding of their corresponding magnetic structures like the magnetic flux ropes (MFRs). But it remains a challenge to confirm the existence of a coherent MFR before or upon the CME eruption on the Sun and to quantitatively characterize the CME-MFR due to the lack of direct magnetic field measurements in the corona. In this study, we investigate MFR structures originating from two active regions (ARs), AR 11719 and AR 12158, and estimate their magnetic properties quantitatively. We perform nonlinear force-free field extrapolations with preprocessed photospheric vector magnetograms. In addition, remote-sensing observations are employed to find indirect evidence of MFRs on the Sun and to analyze the time evolution of magnetic reconnection flux associated with the flare ribbons during the eruption. A coherent “preexisting” MFR structure prior to the flare eruption is identified quantitatively for one event from the combined analysis of the extrapolation and observation. Then the characteristics of MFRs for two events on the Sun before and during the eruption forming the CME-MFR, including the axial magnetic flux, field line twist, and reconnection flux, are estimated and compared with the corresponding in situ modeling results. We find that the magnetic reconnection associated with the accompanying flares for both events injects a significant amount of flux into the erupted CME-MFRs. 
    more » « less
  4. Abstract Magnetic flux ropes (MFRs) play an important role in high-energetic events like solar flares and coronal mass ejections in the solar atmosphere. Importantly, solar observations suggest an association of some flaring events with quadrupolar magnetic configurations. However, the formation and subsequent evolution of MFRs in such magnetic configurations still need to be fully understood. In this paper, we present idealized magnetohydrodynamics (MHD) simulations of MFR formation in a quadrupolar magnetic configuration. A suitable initial magnetic field having a quadrupolar configuration is constructed by modifying a three-dimensional linear force-free magnetic field. The initial magnetic field contains neutral lines, which consist of X-type null points. The simulated dynamics initially demonstrate the oppositely directed magnetic field lines located across the polarity inversion lines (PILs) moving towards each other, resulting in magnetic reconnections. Due to these reconnections, four highly twisted MFRs form over the PILs. With time, the foot points of the MFRs move towards the X-type neutral lines and reconnect, generating complex magnetic structures around the neutral lines, thus making the MFR topology more complex in the quadrupolar configuration than those formed in bipolar loop systems. Further evolution reveals the non-uniform rise of the MFRs. Importantly, the simulations indicate that the pre-existing X-type null points in magnetic configurations can be crucial to the evolution of the MFRs and may lead to the observed brightenings during the onset of some flaring events in the quadrupolar configurations. 
    more » « less
  5. Abstract In this paper, we study the evolution of the X5.4 flare (SOL2012-03-07T00:02) in NOAA Active Region 11429, focusing on its initiation mechanisms and back-reaction effects. To help our study, three-dimensional (3D) coronal magnetic field models are extrapolated from the photospheric magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory under the assumptions of nonlinear force-free field (NLFFF) and non-force-free field (non-FFF). We investigate the 3D magnetic structure and MHD kink instability, torus instability, and double-arc instability (DAI), and find that this flare is most likely triggered by the tether-cutting reconnection and the subsequent DAI. For the back-reactions of the flare, both NLFFF and non-FFF models clearly show an increase in horizontal magnetic field (Bh) and a decrease in inclination angle (ϕ) of the magnetic field near the polarity inversion line, from the photosphere up to a certain height (5 Mm and 8 Mm for non-FFF and NLFFF, respectively). In addition, the non-FFF model shows an enhancement of the downward Lorentz force acting on the photosphere, and the location of the enhancement spatially coincides with the location of the flare onset. The observed back-reaction is likely a consequence of magnetic reconnection. 
    more » « less