skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Do We Really Need Graph Convolution During Training? Light Post-Training Graph-ODE for Efficient Recommendation
Award ID(s):
2106758
PAR ID:
10608414
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM CIKM
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Learning to predict properties of a large graph is challenging because each prediction requires the knowledge of an entire graph, while the amount of memory available during training is bounded. Here we propose Graph Segment Training (GST), a general framework that utilizes a divide-and-conquer approach to allow learning large graph property prediction with a constant memory footprint. GST first divides a large graph into segments and then backpropagates through only a few segments sampled per training iteration. We refine the GST paradigm by introducing a historical embedding table to efficiently obtain embeddings for segments not sampled for backpropagation. To mitigate the staleness of historical embeddings, we design two novel techniques. First, we finetune the prediction head to fix the input distribution shift. Second, we introduce Stale Embedding Dropout to drop some stale embeddings during training to reduce bias. We evaluate our complete method GST+EFD (with all the techniques together) on two large graph property prediction benchmarks: MalNet and TpuGraphs. Our experiments show that GST+EFD is both memory-efficient and fast, while offering a slight boost on test accuracy over a typical full graph training regime. 
    more » « less
  2. Graph Neural Networks (GNNs) are a form of deep learning that have found use for a variety of problems, including the modeling of drug interactions, time-series analysis, and traffic prediction. They represent the problem using non-Euclidian graphs, allowing for a high degree of versatility, and are able to learn complex relationships by iteratively aggregating more contextual information from neighbors that are farther away. Inspired by its power in transformers, Graph Attention Networks (GATs) incorporate an attention mechanism on top of graph aggregation. GATs are considered the state of the art due to their superior performance. To learn the best parameters for a given graph problem, GATs use traditional backpropagation to compute weight updates. To the best of our knowledge, these updates are calculated in software, and closed-form equations describing their calculation for GATs aren’t well known. This paper derives closed-form equations for backpropagation in GATs using matrix notation. These equations can form the basis for design of hardware accelerators for training GATs. 
    more » « less