Abstract Post‐fire debris flows alter impacted fluvial systems, but few studies quantify the magnitude and timing of reach‐scale channel response to these events. In August 2020, the Big Creek watershed along California's central coast burned in the Dolan Fire; in January 2021, an atmospheric river event triggered post‐fire debris flows in steep tributaries to the Big Creek. Here, we characterize the evolution of fluvial morphology and grain size in Big Creek, a cascade and step‐pool channel downstream of tributaries in which post‐fire debris flows initiated, using pre‐ and post‐fire structure from motion (SfM) and airborne lidar surveys. We also make comparisons to Devil's Creek, an adjacent basin which burned but did not experience post‐fire debris flows. We observe grain size fining following debris flows in Big Creek, but the coarsest 40% of the grain size distribution remained essentially unchanged despite reorganization of channel structure. Changes in grain size and elevated post‐fire peak flows account for approximately equal portions of a substantial increase in modeled bedload transport capacity one year post‐fire. In Big Creek, geomorphic recovery is well underway just two years post‐fire. A valley‐spanning log jam, which formed during debris flows, acts as a sediment trap upstream of our Big Creek study reach, and is partially responsible for accelerating recovery processes. In contrast, Devil's Creek exhibited little change in morphology or grain size despite elevated post‐fire peak flows. This period of geomorphic dynamism following the Dolan Fire has complex ecological impacts, notably for the threatened anadromous salmonid spawning habitat in Big Creek.
more »
« less
Indirect impacts of a novel wildfire on a well-studied desert stream: connectivity, carbon, and communities
In 2020 the Bush Fire burned approximately half of the Sycamore Creek watershed in central Arizona. Sycamore Creek has been the subject of more than 40 years of research and the stream has been monitored by NEON since 2017. We studied the effects of fire on biogeochemistry of the stream and its watershed. We deployed autosamplers to monitor stream chemistry during storms on the mainstem and in ephemeral tributaries draining burned and unburned watersheds. The storm sampling program commenced nearly a year following the fire because absence of summer monsoon or winter storms in 2020-21 resulted in no flow in tributaries and intermittent flow in the mainstem. Water chemistry was measured during 14 monsoon storms of 2021 and winter frontal storms of 2021-22 with samples of baseflow collected in the mainstem during intervening periods. Water samples were analyzed for dissolved organic carbon, nitrogen, phosphorus, and major anions and cations. We also measured nutrient content of ash and chemistry of ash leachate as a potential source of solutes to stream biota.
more »
« less
- Award ID(s):
- 2040194
- PAR ID:
- 10608509
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Subject(s) / Keyword(s):
- stream biogeochemistry fire impacts desert stream ash carbon utilization
- Format(s):
- Medium: X
- Location:
- Maricopa County, Arizona
- Institution:
- Arizona State University
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wildfires can change ecosystems by altering solutes in streams. We examined major cations in streams draining a chaparral-dominated watershed in the Santa Ynez Mountains (California, USA) following a wildfire that burned 75 km2 from July 8 to October 5, 2017. We identified changes in solute concentrations, and postulated a relation between these changes and ash leached by rainwater following the wildfire. Collectively, K+ leached from ash samples exceeded that of all other major cations combined. After the wildfire, the concentrations of all major cations increased in stream water sampled near the fire perimeter following the first storm of the season: K+ increased 12-fold, Na+ and Ca2+ increased 1.4-fold, and Mg2+ increased 1.6-fold. Our results suggested that the 12-fold increase in K+ in stream water resulted from K+ leached from ash in the fire scar. Both C and N were measured in the ash samples. The low N content of the ash indicated either high volatilization of N relative to C occurred, or burned material contained less N.more » « less
-
The radon isotope and stable water isotope data for Coal Creek Watershed, Colorado, consists of d2H, d18O, and 222Rn values from samples collected at 8 stream location along Coal Creek, samples from 7 groundwater springs within the watershed, and precipitation isotope samples collected by Next Generation Water Observing System (NGWOS) from a collector within the watershed. All stream and spring samples were collected between June and October, 2021, and precipitation isotope samples were collected between November 2020 and September 2021. These data were collected to evaluate how groundwater contributions to Coal Creek originating from a fractured hillslope and alluvial fan respond to summer monsoon rains and seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all radon samples; (2) a csv of all stream and spring isotope samples; (3) a csv of precipitation isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type.more » « less
-
Abstract Large‐scale wildfires are becoming increasingly common in the wet forests of the Pacific Northwest (USA), with predicted increases in fire prevalence under future climate scenarios. Wildfires can alter streamflow response to precipitation and mobilize water quality constituents, which pose a risk to aquatic ecosystems and downstream drinking water treatment. Research often focuses on the impacts of high‐severity wildfires, with stream biogeochemical responses to low‐ and mixed‐severity fires often understudied, particularly during seasonal shifts in hydrologic connectivity between hillslopes and streams. We studied the impacts of the 2020 Holiday Farm Fire at the HJ Andrews Experimental Forest where rare pre‐fire stream discharge and chemistry data allowed us to evaluate the influence of mixed‐severity fire on stream water quantity and quality. Our research design focused on two well‐studied watersheds with low and low‐moderate burn severity where we examined long‐term data (pre‐ and post‐fire), and instantaneous grab samples collected during four rain events occurring immediately following wildfire and a prolonged dry summer. We analysed the impact of these rain events, which represent the transition from low‐to‐high hydrologic connectivity of the subsurface to the stream, on stream discharge and chemistry behaviour. Long‐term data revealed total annual flows and mean flows remained fairly consistent post‐fire, while small increases in baseflow were observed in the low‐moderately burned watershed. Stream water concentrations of nitrate, phosphate and sulfate significantly increased following fire, with variance in concentration increasing with fire severity. Our end member mixing models suggested that during rain events, the watershed with low‐moderate severity fire had greater streamflow inputs from soil water and groundwater during times of low connectivity compared to the watershed with low severity fire. Finally, differences in fire severity impacts on concentration‐discharge relationships of biogenic solutes were most expressed under low catchment connectivity conditions. Our study provides insights into post‐wildfire impacts to stream water quality, with the goal of informing future research on stream chemistry responses to low, moderate and mixed severity wildfire.more » « less
-
Abstract Exploring nitrogen dynamics in stream networks is critical for understanding how these systems attenuate nutrient pollution while maintaining ecological productivity. We investigated Oak Creek, a dryland watershed in central Arizona, USA, to elucidate the relationship between terrestrial nitrate (NO3−) loading and stream NO3−uptake, highlighting the influence of land cover and hydrologic connectivity. We conducted four seasonal synoptic sampling campaigns along the 167‐km network combined with stream NO3−uptake experiments (in 370–710‐m reaches) and integrated the data in a mass‐balance model to scale in‐stream uptake and estimate NO3−loading from landscape to the stream network. Stream NO3−concentrations were low throughout the watershed (<5–236 μg N/L) and stream NO3−vertical uptake velocity was high (5.5–18.0 mm/min). During the summer dry (June), summer wet (September), and winter dry (November) seasons, the lower mainstem exhibited higher lateral NO3−loading (10–51 kg N km−2 d−1) than the headwaters and tributaries (<0.001–0.086 kg N km−2 d−1), likely owing to differences in irrigation infrastructure and near‐stream land cover. In contrast, during the winter wet season (February) lateral NO3−loads were higher in the intermittent headwaters and tributaries (0.008–0.479 kg N km−2 d−1), which had flowing surface water only in this season. Despite high lateral NO3−loading in some locations, in‐stream uptake removed >81% of NO3−before reaching the watershed outlet. Our findings highlight that high rates of in‐stream uptake maintain low nitrogen export at the network scale, even with high fluxes from the landscape and seasonal variation in hydrologic connectivity.more » « less
An official website of the United States government
