skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 25, 2026

Title: Gravitational effects on Faraday instability in a viscoelastic liquid
The influence of parametric forcing on a viscoelastic fluid layer, in both gravitationally stable and unstable configurations, is investigated via linear stability analysis. When such a layer is vertically oscillated beyond a threshold amplitude, large interface deflections are caused by Faraday instability. Viscosity and elasticity affect the damping rate of momentary disturbances with arbitrary wavelength, thereby altering the threshold and temporal response of this instability. In gravitationally stable configurations, calculations show that increased elasticity can either stabilize or destabilize the viscoelastic system. In weakly elastic liquids, higher elasticity increases damping, raising the threshold for Faraday instability, whereas the opposite is observed in strongly elastic liquids. While oscillatory instability occurs in Newtonian fluids for all gravity levels, we find that parametric forcing below a critical frequency will cause a monotonic instability for viscoelastic systems at microgravity. Importantly, in gravitationally unstable configurations, parametric forcing above this frequency stabilizes viscoelastic fluids, until the occurrence of a second critical frequency. This result contrasts with the case of Newtonian liquids, where under the same conditions, forcing stabilizes a system for all frequencies below a single critical frequency. Analytical expressions are obtained under the assumption of long wavelength disturbances predicting the damping rate of momentary disturbances as well as the range of parameters that lead to a monotonic response under parametric forcing.  more » « less
Award ID(s):
2422919 2025117
PAR ID:
10608533
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
1011
ISSN:
0022-1120
Subject(s) / Keyword(s):
Interfacial Instability, Gravitational Effects, Faraday
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. - (Ed.)
    We study a thin, laterally confined heated liquid layer subjected to mechanical parametric forcing without gravity. In the absence of parametric forcing, the liquid layer exhibits the Marangoni instability, provided the temperature difference across the layer exceeds a threshold. This threshold varies with the perturbation wavenumber, according to a curve with two minima, which correspond to long- and short-wave instability modes. The most unstable mode depends on the lateral confinement of the liquid layer. In wide containers, the long-wave mode is typically observed, and this can lead to the formation of dry spots. We focus on this mode, as the short-wave mode is found to be unaffected by parametric forcing. We use linear stability analysis and nonlinear computations based on a reduced-order model to investigate how parametric forcing can prevent the formation of dry spots. At low forcing frequencies, the liquid film can be rendered linearly stable within a finite range of forcing amplitudes, which decreases with increasing frequency and ultimately disappears at a cutoff frequency. Outside this range, the flow becomes unstable to either the Marangoni instability (for small amplitudes) or the Faraday instability (for large amplitudes). At high frequencies, beyond the cutoff frequency, linear stabilization through parametric forcing is not possible. However, a nonlinear saturation mechanism, occurring at forcing amplitudes below the Faraday instability threshold, can greatly reduce the film surface deformation and therefore prevent dry spots. Although dry spots can also be avoided at larger forcing amplitudes, this comes at the expense of generating large-amplitude Faraday waves. 
    more » « less
  2. Abstract Electroosmotic flow (EOF) has been widely used to transport fluids and samples in micro‐ and nanofluidic channels for lab‐on‐a‐chip applications. This essentially surface‐driven plug‐like flow is, however, sensitive to both the fluid and wall properties, of which any inhomogeneity may draw disturbances to the flow and even instabilities. Existing studies on EOF instabilities have been focused primarily upon Newtonian fluids though many of the chemical and biological solutions are actually non‐Newtonian. We carry out a systematic experimental investigation of the fluid rheological effects on the elastic instability in the EOF of phosphate buffer‐based polymer solutions through T‐shaped microchannels. We find that electro‐elastic instabilities can be induced in shear thinning polyacrylamide (PAA) and xanthan gum (XG) solutions if the applied direct current voltage is above a threshold value. However, no instabilities are observed in Newtonian or weakly shear thinning viscoelastic fluids including polyethylene oxide (PEO), polyvinylpyrrolidone (PVP), and hyaluronic acid (HA) solutions. We also perform a quantitative analysis of the wave parameters for the observed elasto‐elastic instabilities. 
    more » « less
  3. null (Ed.)
    Recent experiments have observed the emergence of standing waves at the free surface of elastic bodies attached to a rigid oscillating substrate and subjected to critical values of forcing frequency and amplitude. This phenomenon, known as Faraday instability, is now well understood for viscous fluids but surprisingly eluded any theoretical explanation for soft solids. Here, we characterize Faraday waves in soft incompressible slabs using the Floquet theory to study the onset of harmonic and subharmonic resonance eigenmodes. We consider a ground state corresponding to a finite homogeneous deformation of the elastic slab. We transform the incremental boundary value problem into an algebraic eigenvalue problem characterized by the three dimensionless parameters, that characterize the interplay of gravity, capillary and elastic waves. Remarkably, we found that Faraday instability in soft solids is characterized by a harmonic resonance in the physical range of the material parameters. This seminal result is in contrast to the subharmonic resonance that is known to characterize viscous fluids, and opens the path for using Faraday waves for a precise and robust experimental method that is able to distinguish solid-like from fluid-like responses of soft matter at different scales. 
    more » « less
  4. The interplay between viscoelasticity and inertia in dilute polymer solutions at high deformation rates can result in inertioelastic instabilities. The nonlinear evolution of these instabilities generates a state of turbulence with significantly different spatiotemporal features compared to Newtonian turbulence, termed elastoinertial turbulence (EIT). We ex- plore EIT by studying the dynamics of a submerged planar jet of a dilute aqueous polymer solution injected into a quiescent tank of water using a combination of schlieren imaging and laser Doppler velocimetry (LDV). We show how fluid elasticity has a nonmonotonic effect on the jet stability depending on its magnitude, creating two distinct regimes in which elastic effects can either destabilize or stabilize the jet. In agreement with linear stability analyses of viscoelastic jets, an inertioelastic shear-layer instability emerges near the edge of the jet for small levels of elasticity, independent of bulk undulations in the fluid column. The growth of this disturbance mode destabilizes the flow, resulting in a turbulence transition at lower Reynolds numbers and closer to the nozzle compared to the conditions required for the transition to turbulence in a Newtonian jet. Increasing the fluid elasticity merges the shear-layer instability into a bulk instability of the jet column. In this regime, elastic tensile stresses generated in the shear layer act as an “elastic membrane” that partially stabilizes the flow, retarding the transition to turbulence to higher levels of inertia and greater distances from the nozzle. In the fully turbulent state far from the nozzle, planar viscoelastic jets exhibit unique spatiotemporal features associated with EIT. The time-averaged angle of jet spreading, an Eulerian measure of the degree of entrainment, and the centerline velocity of the jets both evolve self-similarly with distance from the nozzle. The autocovariance of the schlieren images in the fully turbulent region of the jets shows coherent structures that are elongated in the streamwise direction, consistent with the suppression of streamwise vortices by elastic stresses. These coherent structures give a higher spectral energy to small frequency modes in EIT characterized by LDV measurements of the velocity fluctuations at the jet centerline. Finally, our LDV measurements reveal a frequency spectrum characterized by a −3 power-law exponent, different from the well-known −5/3 power-law exponent characteristic of Newtonian turbulence. 
    more » « less
  5. It is well known that when a flexible or flexibly mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices. Here, we show for the first time that fluid–structure interactions can also be observed when the fluid is viscoelastic. For viscoelastic fluids, a flexible structure can become unstable in the absence of fluid inertia, at infinitesimal Reynolds numbers, due to the onset of a purely elastic flow instability. Nonlinear periodic oscillations of the flexible structure are observed and found to be coupled to the time-dependent growth and decay of viscoelastic stresses in the wake of the structure. 
    more » « less