Abstract Rosalia funebris (RFUNE; Cerambycidae), the banded alder borer, is a longhorn beetle whose larvae feed on the wood of various economically and ecologically significant trees in western North America. Adults are short-lived and not known to consume plant material substantially. We sequenced, assembled, and annotated the RFUNE genome using HiFi and RNASeq data. We documented genome architecture and gene content, focusing on genes putatively involved in plant feeding (phytophagy). Comparisons were made to the well-studied genome of the Asian longhorned beetle (AGLAB; Anoplophora glabripennis) and other Cerambycidae. The 814 Mb RFUNE genome assembly was distributed across 42 contigs, with an N50 of 30.18 Mb. Repetitive sequences comprised 60.27% of the genome, and 99.0% of expected single-copy orthologous genes were fully assembled. We identified 12,657 genes, fewer than in the four other species studied, and 46.4% fewer than for Aromia moschata (same subfamily as RFUNE). Of the 7,258 orthogroups shared between RFUNE and AGLAB, 1,461 had more copies in AGLAB and 1,023 had more copies in RFUNE. We identified 240 genes in RFUNE that putatively arose via horizontal transfer events. The RFUNE genome encoded substantially fewer putative plant cell wall degrading enzymes than AGLAB, which may relate to the longer-lived plant-feeding adults of the latter species. The RFUNE genome provides new insights into cerambycid genome architecture and gene content and provides a new vantage point from which to study the evolution and genomic basis of phytophagy in beetles.
more »
« less
This content will become publicly available on March 22, 2026
Insights into longhorn beetle (Cerambycidae) evolution from comparative analyses of the red-headed ash borer ( Neoclytus acuminatus acuminatus ) genome
Neoclytus acuminatus acuminatus, the red-headed ash borer, is a wood-boring longhorn beetle (Cerambycidae: Cerambycinae) native to North America and introduced in Eurasia and South America. Its larvae develop in dying or recently dead hardwood trees, including ecologically and economically significant species of ash, hickory, and oak. We sequenced, assembled, and annotated the genome of a female N. acuminatus and compared it to the publicly available genomes of other cerambycid species. The 508 Mb N. acuminatus genome assembly spanned 20 contigs (19 nuclear + 1 mitochondrial), with an N50 of 52.59 Mb and largest contig of 61.20 Mb. A moderately high fraction of the genome (62.63%) comprised repetitive sequences, with nearly all (99.4%) expected single-copy orthologous genes (BUSCOs) present and fully assembled. We identified 2 contigs as fragments of the N. acuminatus sex chromosome. Genome annotation identified 12,899 genes, including 109 putative horizontally transferred loci. Synteny analysis identified well-conserved blocks of collinearity between the N. acuminatus genome and other Cerambycidae. The genome contains a similar number of genes encoding putative plant cell wall degrading enzymes as other Cerambycidae. The N. acuminatus genome provides new insights into genome evolution in the family Cerambycidae, known for its rich diversity of xylophagous species, and provides a new viewpoint from which to study the evolution and genomic basis of traits such as wood-feeding and olfaction in beetles and other insects.
more »
« less
- Award ID(s):
- 2110053
- PAR ID:
- 10608553
- Publisher / Repository:
- Heredity
- Date Published:
- Journal Name:
- Journal of Heredity
- ISSN:
- 0022-1503
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Diaprepes root weevil (DRW), Diaprepes abbreviatus, is a broadly polyphagous invasive pest of agriculture in the southern United States and the Caribbean. Its genome was sequenced, assembled, and annotated to study genomic correlates of specialized plant-feeding and invasiveness and to facilitate the development of new methods for DRW control. The 1.69 Gb D. abbreviatus genome assembly was distributed across 653 contigs, with an N50 of 7.8 Mb and the largest contig of 62 Mb. Most of the genome was comprised of repetitive sequences, with 66.17% in transposable elements, 5.75% in macrosatellites, and 2.06% in microsatellites. Most expected orthologous genes were present and fully assembled, with 99.5% of BUSCO genes present and 1.5% duplicated. One hundred and nine contigs (27.19 Mb) were identified as putative fragments of the X and Y sex chromosomes, and homology assessment with other beetle X chromosomes indicated a possible sex chromosome turnover event. Genome annotation identified 18,412 genes, including 43 putative horizontally transferred (HT) loci. Notably, 258 genes were identified from gene families known to encode plant cell wall degrading enzymes and invertases, including carbohydrate esterases, polysaccharide lyases, and glycoside hydrolases (GH). GH genes were unusually numerous, with 239 putative genes representing 19 GH families. Interestingly, several other beetle species with large numbers of GH genes are (like D. abbreviatus) successful invasive pests of agriculture or forestry.more » « less
-
Abstract Tetraopes are aposematic longhorn beetles (Cerambycidae) that feed primarily on toxic plants in the genus Asclepias (milkweeds). Studies of Tetraopes and their host plants have revealed compelling evidence for insect–plant coevolution and cospeciation. We sequenced, assembled, and annotated the genome of the common red milkweed beetle, Tetraopes tetrophthalmus, and explored gene content and evolution, focusing on annotated genes putatively involved in chemosensation, allelochemical detoxification, and phytophagy. Comparisons were made to the Asian longhorned beetle (Anoplophora glabripennis) genome. The genome assembly comprised 779 Mb distributed across 1,057 contigs, with an N50 of 2.21 Mb and 13,089 putative genes, including 97.3% of expected single-copy orthologs. Manual curation identified 122 putative odorant receptors (OR) and 162 gustatory receptors (GR), the former number similar to A. glabripennis but the latter only 69% of the A. glabripennis suite. We also documented a greater percentage of pseudogenic GRs and ORs compared to A. glabripennis, suggesting an ongoing reduction in chemosensory function, perhaps related to host specialization. We found lower diversity within certain well-studied gene families predicted to encode putative plant cell wall degrading enzymes in the T. tetrophthalmus genome, perhaps also due to host specialization. Exploring genes relevant to stress and allelochemical detoxification revealed evidence of an abundance of ABC-family genes in the T. tetrophthalmus genome, which may be related to sequestering toxic cardiac glycosides. Our studies further illuminate the genomic basis and evolution of chemosensation in longhorn beetles and provide a new vantage point from which to explore the ecology and evolution of specialized plant-feeding in Tetraopes and other phytophagous beetles.more » « less
-
Vogel, K (Ed.)Abstract We present the first chromosome-level genome assembly for Bombus pensylvanicus, a historically widespread native pollinator species that was distributed across eastern North America but has subsequently undergone declines in range area and local relative abundance. This species has been of significant interest as a model for understanding both patterns and possible causes of bumble bee decline in the region, including the role of genetic variation. Here we present a chromosome-level reference genome assembled using Pacific Biosciences singe-molecule HiFi sequences and Hi-C data and annotated using evidence derived from RNA sequencing of multiple tissue types. The B. pensylvanicus genome has a total length of ∼352.6 Mb and was assembled into a total of 224 scaffolds, with 19 primary pseudomolecules representing putative chromosomes and an N50 = 14.872 Mb. Annotation with the Eukaryotic Genome Annotation Pipeline—External (EGAPx) identified 11,411 genes (10,263 protein coding), and BUSCO analysis of 5,991 Hymenoptera-specific BUSCO groups indicated a completeness for the proteins of 99.0% (98.6% single-copy, 0.5% duplicated) and for the genome of 98.5% (98.2% single-copy, 0.3% duplicated). We present synteny analyses with other recently assembled Bombus genomes representing different subgenera and examine the distribution of repetitive regions of the genome relative to the distribution of genes and noncoding RNAs.more » « less
-
Erysiphe necator is an economically important biotrophic fungal pathogen responsible for powdery mildew disease on grapevine. Currently, genome sequences are available for only a few E. necator isolates from the United States. Based on the combination of Nanopore and Illumina sequencing technologies, we present here the complete genome assembly for an isolate of E. necator, NAFU1, identified in China. We acquired a total of 15.93 Gb of raw reads. These reads were processed into a 61.12-Mb genome assembly containing 73 contigs with an N 50 of 2.06 Mb and a maximum length of 6.05 Mb. Combining the results of three gene-prediction modules (i.e., an evidence-based gene modeler [EVidenceModeler], an ab initio gene modeler, and a homology-based gene modeler), we predicted 7,235 protein-coding genes in the assembled genome of E. necator NAFU1. This information will facilitate studies of genome evolution and pathogenicity mechanisms of E. necator and other powdery mildew species through comparative genome sequence analysis and other molecular genetic tools. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
An official website of the United States government
