skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 28, 2026

Title: OptiReduce: Resilient and Tail-Optimal AllReduce for Distributed Deep Learning in the Cloud
We present OptiReduce, a new collective-communication system for the cloud with bounded, predictable completion times for deep-learning jobs in the presence of varying computation (stragglers) and communication (congestion and gradient drops) variabilities. OptiReduce exploits the inherent resiliency and the stochastic nature of distributed deep-learning (DDL) training and fine-tuning to work with approximated (or lost) gradients—providing an efficient balance between (tail) performance and the resulting accuracy of the trained models. Exploiting this domain-specific characteristic of DDL, OptiReduce introduces (1) mechanisms (e.g., unreliable bounded transport with adaptive timeout) to improve the DDL jobs’ tail execution time, and (2) strategies (e.g., Transpose AllReduce and Hadamard Transform) to mitigate the impact of gradient drops on model accuracy. Our evaluation shows that OptiReduce achieves 70% and 30% faster time-to-accuracy (TTA), on average, when operating in shared, cloud environments (e.g., CloudLab) compared to Gloo and NCCL, respectively.  more » « less
Award ID(s):
2521510 2521196
PAR ID:
10608556
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
22nd USENIX Symposium on Networked Systems Design and Implementation
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks (DNNs) are increasingly popular owing to their ability to solve complex problems such as image recognition, autonomous driving, and natural language processing. Their growing complexity coupled with the use of larger volumes of training data (to achieve acceptable accuracy) has warranted the use of GPUs and other accelerators. Such accelerators are typically expensive, with users having to pay a high upfront cost to acquire them. For infrequent use, users can, instead, leverage the public cloud to mitigate the high acquisition cost. However, with the wide diversity of hardware instances (particularly GPU instances) available in public cloud, it becomes challenging for a user to make an appropriate choice from a cost/performance standpoint. In this work, we try to address this problem by (i) introducing a comprehensive distributed deep learning (DDL) profiler Stash, which determines the various execution stalls that DDL suffers from, and (ii) using Stash to extensively characterize various public cloud GPU instances by running popular DNN models on them. Specifically, it estimates two types of communication stalls, namely, interconnect and network stalls, that play a dominant role in DDL execution time. Stash is implemented on top of prior work, DS-analyzer, that computes only the CPU and disk stalls. Using our detailed stall characterization, we list the advantages and shortcomings of public cloud GPU instances for users to help them make an informed decision(s). Our characterization results indicate that the more expensive GPU instances may not be the most performant for all DNN models and that AWS can sometimes sub-optimally allocate hardware interconnect resources. Specifically, the intra-machine interconnect can introduce communication overheads of up to 90% of DNN training time and the network-connected instances can suffer from up to 5× slowdown compared to training on a single instance. Furthermore, (iii) we also model the impact of DNN macroscopic features such as the number of layers and the number of gradients on communication stalls, and finally, (iv) we briefly discuss a cost comparison with existing work. 
    more » « less
  2. Deep neural networks (DNNs) are increasingly popular owing to their ability to solve complex problems such as image recognition, autonomous driving, and natural language processing. Their growing complexity coupled with the use of larger volumes of training data (to achieve acceptable accuracy) has warranted the use of GPUs and other accelerators. Such accelerators are typically expensive, with users having to pay a high upfront cost to acquire them. For infrequent use, users can, instead, leverage the public cloud to mitigate the high acquisition cost. However, with the wide diversity of hardware instances (particularly GPU instances) available in public cloud, it becomes challenging for a user to make an appropriate choice from a cost/performance standpoint. In this work, we try to address this problem by (i) introducing a comprehensive distributed deep learning (DDL) profiler Stash, which determines the various execution stalls that DDL suffers from, and (ii) using Stash to extensively characterize various public cloud GPU instances by running popular DNN models on them. Specifically, it estimates two types of communication stalls, namely, interconnect and network stalls, that play a dominant role in DDL execution time. Stash is implemented on top of prior work, DS-analyzer, that computes only the CPU and disk stalls. Using our detailed stall characterization, we list the advantages and shortcomings of public cloud GPU instances for users to help them make an informed decision(s). Our characterization results indicate that the more expensive GPU instances may not be the most performant for all DNN models and that AWS can sometimes sub-optimally allocate hardware interconnect resources. Specifically, the intra-machine interconnect can introduce communication overheads of up to 90% of DNN training time and the network-connected instances can suffer from up to 5× slowdown compared to training on a single instance. Furthermore, (iii) we also model the impact of DNN macroscopic features such as the number of layers and the number of gradients on communication stalls, and finally, (iv) we briefly discuss a cost comparison with existing work. 
    more » « less
  3. Deep Neural Networks (DNNs) have been applied as an effective machine learning algorithm to tackle problems in different domains. However, the endeavor to train sophisticated DNN models can stretch from days into weeks, presenting substantial obstacles in the realm of research focused on large-scale DNN architectures. Distributed Deep Learning (DDL) contributes to accelerating DNN training by distributing training workloads across multiple computation accelerators, for example, graphics processing units (GPUs). Despite the considerable amount of research directed toward enhancing DDL training, the influence of data loading on GPU utilization and overall training efficacy remains relatively overlooked. It is non-trivial to optimize data-loading in DDL applications that need intensive central processing unit (CPU) and input/output (I/O) resources to process enormous training data. When multiple DDL applications are deployed on a system (e.g., Cloud and High-Performance Computing (HPC) system), the lack of a practical and efficient technique for data-loader allocation incurs GPU idleness and degrades the training throughput. Therefore, our work first focuses on investigating the impact of data-loading on the global training throughput. We then propose a throughput prediction model to predict the maximum throughput for an individual DDL training application. By leveraging the predicted results, A-Dloader is designed to dynamically allocate CPU and I/O resources to concurrently running DDL applications and use the data-loader allocation as a knob to reduce GPU idle intervals and thus improve the overall training throughput. We implement and evaluate A-Dloader in a DDL framework for a series of DDL applications arriving and completing across the runtime. Our experimental results show that A-Dloader can achieve a 28.9% throughput improvement and a 10% makespan improvement compared with allocating resources evenly across applications. 
    more » « less
  4. Due to a growing interest in deep learning applications [5], compute-intensive and long-running (hours to days) training jobs have become a significant component of datacenter workloads. A large fraction of these jobs is often exploratory, with the goal of determining the best model structure (e.g., the number of layers and channels in a convolutional neural network), hyperparameters (e.g., the learning rate), and data augmentation strategies for the target application. Notably, training jobs are often terminated early if their learning metrics (e.g., training and validation accuracy) are not converging, with only a few completing successfully. For this motivating application, we consider the problem of scheduling a set of jobs that can be terminated at predetermined checkpoints with known probabilities estimated from historical data. We prove that, in order to minimize the time to complete the first K successful jobs on a single server, optimal scheduling does not require preemption (even when preemption overhead is negligible) and provide an optimal policy; advantages of this policy are quantified through simulation. Related Work. While job scheduling has been investigated extensively in many scenarios (see [6] and [2] for a survey of recent result), most policies require that the cost of waiting times of each job be known at scheduling time; in contrast, in our setting the scheduler does not know which job will be the K-th successful job, and sojourn times of subsequent jobs do not contribute to the target metric. For example, [4, 3] minimize makespan (i.e., the time to complete all jobs) for known execution times and waiting time costs; similarly, Gittins index [1] and SR rank [7] minimize expected sojourn time of all jobs, i.e., both successfully completed jobs and jobs terminated early. Unfortunately, scheduling policies not distinguishing between these two types of jobs may favor jobs where the next stage is short and leads to early termination with high probability, which is an undesirable outcome in our applications of interest. 
    more » « less
  5. null (Ed.)
    Differential privacy (DP) is a popular mechanism for training machine learning models with bounded leakage about the presence of specific points in the training data. The cost of differential privacy is a reduction in the model's accuracy. We demonstrate that in the neural networks trained using differentially private stochastic gradient descent (DP-SGD), this cost is not borne equally: accuracy of DP models drops much more for the underrepresented classes and subgroups. For example, a gender classification model trained using DP-SGD exhibits much lower accuracy for black faces than for white faces. Critically, this gap is bigger in the DP model than in the non-DP model, i.e., if the original model is unfair, the unfairness becomes worse once DP is applied. We demonstrate this effect for a variety of tasks and models, including sentiment analysis of text and image classification. We then explain why DP training mechanisms such as gradient clipping and noise addition have disproportionate effect on the underrepresented and more complex subgroups, resulting in a disparate reduction of model accuracy. 
    more » « less