skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: High-Current-Density Electrosynthesis of Formate from Captured CO2 Solution by MOF-Derived Bismuth Nanosheets
Greenhouse gas emissions present a significant challenge to humanity, and utilizing renewable electricity to convert emitted CO2 into value-added products offers a promising solution; however, traditional CO2 capture and regeneration processes remain energy-intensive, restricting the overall system efficiency and decarbonization efficacy. In this study, an advanced direct reduction of captured CO2 with large current densities for formate electrosynthesis was demonstrated without the need for CO2 regeneration or compression. The bismuth nanosheet (DRM-BiNS) was synthesized by direct reduction of a Bi-based MOF, representing a new class of catalytic materials with a large surface area and interconnected pores, suitable for the direct reduction of captured CO₂. By seamlessly combining experimentation and simulation, insights into the structure-parameter-performance relation were acquired in a flow cell setting, including critical membrane-electrode distance, cell orientation, and pumping flow rate. Important flow-cell components, such as catholyte volume, electrode substrate, membrane choice, and ionomer type, were also carefully examined to enhance the cell performance. In sharp contrast to prior studies limited to current densities below 20 mA/cm² in bicarbonate-based captured CO2 solutions, this work demonstrates a remarkable current density of 300 mA/cm² with an FE to formate comparable to the case with gas-fed CO2 reduction. Moreover, the process sustained an FE above 50% at a high current density of 500 mA/cm². The DRM-BiNS catalyst exhibited outstanding selectivity, activity, and stability, significantly outperforming oxide-derived bismuth nanosheets (OD-BiNS) in captured CO2 reduction. These findings offer critical insights into the development of sustainable and scalable CO2 utilization technologies.  more » « less
Award ID(s):
2219172 2316482
PAR ID:
10608612
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Chemical engineering journal
ISSN:
1385-8947
Subject(s) / Keyword(s):
Captured CO2 reduction MOF-derived Bismuth Nanosheet catalysts High current density Flow cell.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Greenhouse gas emissions present a significant challenge to humanity, and utilizing renewable electricity to convert emitted CO2 into value-added products offers a promising solution; however, traditional CO2 capture and regeneration processes remain energy-intensive, restricting the overall system efficiency and decarbonization efficacy. In this study, an advanced direct reduction of captured CO2 with large current densities for formate electrosynthesis was demonstrated without the need for CO2 regeneration or compression. The bismuth nanosheet (DRM-BiNS) was synthesized by direct reduction of a Bi-based MOF, representing a new class of catalytic materials with a large surface area and interconnected pores, suitable for the direct reduction of captured CO₂. By seamlessly combining experimentation and simulation, insights into the structure-parameter-performance relation were acquired in a flow cell setting, including critical membrane-electrode distance, cell orientation, and pumping flow rate. Important flow-cell components, such as catholyte volume, electrode substrate, membrane choice, and ionomer type, were also carefully examined to enhance the cell performance. In sharp contrast to prior studies limited to current densities below 20 mA/cm² in bicarbonate-based captured CO2 solutions, this work demonstrates a remarkable current density of 300 mA/cm² with an FE to formate comparable to the case with gas-fed CO2 reduction. Moreover, the process sustained an FE above 50% at a high current density of 500 mA/cm². The DRM-BiNS catalyst exhibited outstanding selectivity, activity, and stability, significantly outperforming oxide-derived bismuth nanosheets (OD-BiNS) in captured CO2 reduction. These findings offer critical insights into the development of sustainable and scalable CO2 utilization technologies. 
    more » « less
  2. Abstract Aldehyde‐assisted water electrolysis offers an attractive pathway for energy‐saving bipolar hydrogen production with combined faradaic efficiency (FE) of 200% while converting formaldehyde into value‐added formate. Herein we report the design and synthesis of noble metal‐free Cu6Sn5alloy as a highly effective electrocatalyst for formaldehyde electro‐oxidative dehydrogenation, demonstrating a geometric current density of 915 ± 46 mA cm−2at 0.4 V versus reversible hydrogen electrode, outperforming many noble metal electrocatalysts reported previously. The formaldehyde‐assisted water electrolyzer delivers 100 mA cm−2at a low cell voltage of 0.124 V, and a current density of 486 ± 20 mA cm−2at a cell voltage of 0.6 V without any iR compensation and exhibits nearly 200% faradaic efficiency for bipolar hydrogen production at 100 mA cm−2in 88 h long‐term operation. Density functional theory calculations further confirm the notably lowered barriers for dehydrogenation and Tafel steps on the Cu₆Sn₅ surface compared to Cu, underscoring its potential as a highly active catalyst. 
    more » « less
  3. Abstract Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm−2). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism. 
    more » « less
  4. Electrocatalytic upgrading of biomass-derived feedstocks driven by renewable electricity offers a greener way to reduce the global carbon footprint associated with the production of value-added chemicals. Paired electrolysis is an emerging platform for cogenerating high-valued chemicals from both the cathode and anode, potentially powered by renewable electricity from wind or solar sources. By pairing with an anodic biomass oxidation upgrading reaction, the elimination of the sluggish and less valuable water oxidation increases flow cell productivity and efficiency. In this presentation, we report our research progress on paired electrolsysis of HMF to production of higher valued chemicals in electrochemical flow cells. We first prepared an oxide-derived Ag (OD-Ag) electrode with high activity and up to 98.2% selectivity for the ECH of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), and such efficient conversion was achieved in a three-electrode flow cell. The excellent BHMF selectivity was maintained over a broad potential range with long-term operational stability. In HMF-to-BHMF paired with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated HMF-to-FDCA conversion, a markedly reduced cell voltage from ~7.5 V to ~2.0 V was observed by transferring the electrolysis from the H-type cell to the flow cell, corresponding to more than four-fold increase in energy efficiency in operation at 10 mA. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA. Next, we have demonstrated membrane electrode assembly (MEA)-based flow cells for the paired electrolysis of 5-(hydroxymethyl)furfural (HMF) paired electrolysis to bis(hydroxymethyl)furan (BHMF) and 2,5-furandicarboxylic acid (FDCA). In this work, the oxygen evolution reaction (OER) was substituted by TEMPO-mediated HMF oxidation, dropping the cell voltage was from 1.4 V to 0.7 V at a current density of 1.0 mA cm−2. A minimized cell voltage of ~1.5 V for a continuous 24 h co-electrolysis of HMF was then achieved at the current density of 2 mA cm−2(constant current of 10 mA), leading to the highest combined faradaic efficiency (FE) of 139% for HMF-to-BHMF and HMF-to-FDCA. A NiFe oxide catalyst on carbon cloth further replaced the anodic TEMPO mediator for HMF paired electrolysis in a pH-asymmetric flow cell. We envision renewable electrical energy can potentially drive the whole process, thus providing a sustainable avenue towards distributed, scalable, and energy-efficient electrosynthesis. 
    more » « less
  5. The electrochemical CO2 reduction reaction (ECO2RR) driven by renewable electricity holds promise to store intermittent energy in chemical bonds, while producing value-added chemicals and fuels sustainably. Unfortunately, it remains a grand challenge to simultaneously achieve a high faradaic efficiency (FE), a low overpotential, and a high current density of the ECO2RR. Herein, we report the synthesis of heterostructured Bi–Cu2S nanocrystals via a one-pot solution-phase method. The epitaxial growth of Cu2S on Bi leads to abundant interfacial sites and the resultant heterostructured Bi–Cu2S nanocrystals enable highly efficient ECO2RR with a largely reduced overpotential (240 mV lower than that of Bi), a near-unity FE (>98%) for formate production, and a high partial current density (2.4- and 5.2-fold higher JHCOO− than Cu2S and Bi at −1.0 V vs. reversible hydrogen electrode, RHE). Density functional theory (DFT) calculations show that the electron transfer from Bi to Cu2S at the interface leads to the preferential stabilization of the formate-evolution intermediate (*OCHO). 
    more » « less