skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 10, 2026

Title: Convergent expansions of keystone gene families drive metabolic innovation in Saccharomycotina yeasts
Many remarkable phenotypes have repeatedly occurred across vast evolutionary distances. When convergent traits emerge on the tree of life, they are sometimes driven by the same underlying gene families, while other times, many different gene families are involved. Conversely, a gene family may be repeatedly recruited for a single trait or many different traits. To understand the general rules governing convergence at both genomic and phenotypic levels, we systematically tested associations between 56 binary metabolic traits and gene count in 14,785 gene families from 993 Saccharomycotina yeasts. Using a recently developed phylogenetic approach that reduces spurious correlations, we found that gene family expansion and contraction were significantly linked to trait gain and loss in 45/56 (80%) traits. While 595/739 (81%) significant gene families were associated with only one trait, we also identified several “keystone” gene families that were significantly associated with up to 13/56 (23%) of all traits. Strikingly, most of these families are known to encode metabolic enzymes and transporters, including all members of the industrially relevantMALtose fermentation loci in the baker’s yeastSaccharomyces cerevisiae. These results indicate that convergent evolution on the gene family level may be more widespread across deeper timescales than previously believed.  more » « less
Award ID(s):
2110404 2110403
PAR ID:
10608674
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
23
ISSN:
0027-8424
Page Range / eLocation ID:
e2500165122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kendall, Melissa M (Ed.)
    ABSTRACT Bacteria can change morphology in response to stressors and changes in their environment, including infection of a host. We previously identified the bacterial species,Bordetella atropi, which uses nutrient-induced filamentation as a novel mechanism for cell-to-cell spreading in the intestinal epithelial cells of a nematode host. To further investigate the conservation of nutrient-induced filamentation in Bordetellae, we utilized the turkey-infecting speciesBordetella avium,which filamentsin vitrowhen switched from a standard growth media to an enriched media. We conducted a selection-based filamentation screen withB. aviumand isolated two independent non-filamentous mutants that failed to filament in highly enriched media. These mutants contained different alleles inbvgS,the sensor in the two-component master virulence regulator (BvgAS) conserved across theBordetellagenus. To investigate the role ofbvgSin nutrient-induced filamentation, we conducted transcriptomics and found that our allele ofbvgSresulted in loss of responsiveness to highly enriched media, especially in genes related to nutrient uptake and metabolism. The most dysregulated gene in thebvgSmutant encoded for succinyl-CoA:acetate CoA-transferase, and we were able to regulate filamentation with exogenous metabolites up and downstream of this enzyme. These data suggest thatbvgSregulates nutrient-induced filamentation by controlling metabolic capacity. Overall, we found that the virulence regulatorbvgScan control nutrient-induced filamentation inB. avium,suggesting there may be conservation in Bordetellae for utilizing this morphological change as a virulence phenotype.IMPORTANCEBordetella aviumis the causative agent of bordetellosis, an infectious disease affecting the respiratory system of birds, significantly increasing morbidity in poultry, ultimately leading to economic losses. It is long known that the pathogenesis ofB. aviumis governed by the two-component master virulence regulator, BvgAS. However, this regulon has never before been associated with nutrient-induced filamentation. In this study, we identify BvgS to be regulating nutrient-induced filamentation. We also report the first transcriptomics analysis of filamentousB. avium, showing the enzyme succinyl-CoA:acetate CoA-transferase may be involved in a metabolic shift in enriched nutrient conditions leading to filamentation. Our results suggest that virulence inB. aviumis a dynamic relationship, affected by nutrient availability, rather than a simple binary decision. 
    more » « less
  2. We present a novel symbolic reasoning engine for SQL which can efficiently generate an inputIfornqueriesP1, ⋯,Pn, such that their outputs onIsatisfy a given property (expressed in SMT). This is useful in different contexts, such as disproving equivalence of two SQL queries and disambiguating a set of queries. Our first idea is to reason about an under-approximation of eachPi— that is, a subset ofPi’s input-output behaviors. While it makes our approach both semantics-aware and lightweight, this idea alone is incomplete (as a fixed under-approximation might miss some behaviors of interest). Therefore, our second idea is to perform search over an expressive family of under-approximations (which collectively cover all program behaviors of interest), thereby making our approach complete. We have implemented these ideas in a tool, Polygon, and evaluated it on over 30,000 benchmarks across two tasks (namely, SQL equivalence refutation and query disambiguation). Our evaluation results show that Polygon significantly outperforms all prior techniques. 
    more » « less
  3. Host–parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple cropSorghum bicolor(L.) Moench and its association with the parasitic weedStriga hermonthica(Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghumLOW GERMINATION STIMULANT 1 (LGS1)are broadly distributed among African landraces and geographically associated withS. hermonthicaoccurrence. However, low frequency of these alleles withinS. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation.LGS1is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surroundingLGS1and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR–Cas9-edited sorghum further indicate that the benefit ofLGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities. 
    more » « less
  4. Genomic data are lacking for most Antarctic marine invertebrates, predicating our ability to understand physiological adaptation and specific life-history traits, such as longevity. The environmental stress response of the Antarctic infaunal clamLaternula ellipticais much diminished in older adult animals compared with younger juvenile individuals. However, the mechanism underlying this reduced capacity is unknown. In this study, we describe and analyse the genome ofL. ellipticaand use it as a tool to understand transcriptomic responses to shell damage across different age cohorts. Gene expression data were combined with reduced representation enzymic methyl sequencing to identify if methylation was acting as an epigenetic mechanism driving age-dependent transcriptional profiles. Our transcriptomic results demonstrated a clear bipartite molecular response inL. elliptica, associated with a rapid growth phase in juveniles and a stabilization phase in reproductively mature adults. Genes active in the response to damage repair in juvenile animals are silent in adults but can be reactivated after several months following damage stimulus; however, these genes were not methylated. Hence, the trigger for this critical and imprinted change in physiological state is, as yet, unknown. While epigenetics is likely involved in this process, the mechanism is unlikely to be methylation. 
    more » « less
  5. van_Oers, Monique M (Ed.)
    ABSTRACT Venturia canescensis a parasitoid wasp that harbors a domesticated endogenous virus (DEV) and parasitizes host insects likeEphestia kuehniella. TheV. canescensDEV evolved from an alphanudivirus and produces virus-like particles (VLPs) in females that protect wasp eggs from a host immune defense called encapsulation. In contrast, very few DEV genes required for VLP formation and function have been identified. In this study, we characterized fiveV. canescensDEV genes of unknown function that all nudiviruses encode. Three of these genes are single copy (OrNVorf18-like,OrNVorf61-like, andOrNVorf76-like), whileOrNVorf41-likehas expanded into a six-member family andOrNVorf47-likehas expanded into a three-member family. Sequence analysis indicated all of these genes retain essential motifs present in nudivirus homologs, while transmission electron microscopy (TEM) studies characterized the timing of VLP formation during the wasp pupal stage. RNA interference (RNAi) assays identifiedOrNVorf18-like,OrNVorf61-like,OrNVorf41-like-1,andOrNVorf41-like-2as genes that are required for normal VLP formation. Knockdown ofOrNVorf47-likefamily members did not affect VLP formation but did disable binding of VLPs toV. canescenseggs and protection against encapsulation. Disabled formation of VLPs in response to RNAi knockdown ofOrNVorf18-like,OrNVorf61-like,OrNVorf41-like-1,andOrNVorf41-like-2also resulted in wasp eggs being encapsulated. In contrast, knockdown ofOrNVorf76-likehad no effect on VLP assembly, egg binding, or encapsulation. Altogether, reported results significantly advance our understanding ofV. canescensVLP (VcVLP) formation and function. IMPORTANCEUnderstanding howV. canescenscoopted an alphanudivirus to produce VcVLPs is of interest to the study of virus evolution. Our results show that three nudivirus core genes have essential functions in VcVLP formation, while one is essential for the novel function of binding to wasp eggs and protection from encapsulation, which is the most important immune defense of insects against parasitoids. 
    more » « less