The appropriate selection of rootstock-scion combinations to improve yield and fully realize grafting benefits requires an in-depth understanding of rootstock-scion synergy. Toward this end, we grafted two determinate-type scions [grape tomato (‘BHN 1022') and beefsteak tomato (‘Skyway')] onto four rootstocks with different characteristics to examine plant growth, yield performance, biomass production, and fruit mineral nutrient composition. The study was conducted during two growing seasons (spring and fall plantings in Florida) under organic production in high tunnels with the non-grafted scions as controls. Rootstocks had previously been designated as either “generative” (‘Estamino') or “vegetative” (‘DR0141TX') by some commercial suppliers or had not been characterized [‘RST-04-106-T' and ‘SHIELD RZ F1 (61-802)']. Also, ‘Estamino', ‘DR0141TX', and ‘RST-04-106-T' had been described as more vigorous than ‘SHIELD RZ F1 (61-802)'. In both planting seasons (with low levels of soilborne disease pressure), the “vegetative” and “generative” rootstocks increased marketable and total fruit yields for both scions except for the beefsteak tomato grafted with the “vegetative” rootstock in fall planting. Positive effects of ‘RST-04-106-T' on fruit yield varied with scions and planting seasons, and were most manifested when grafted with the beefsteak tomato scion in fall planting. ‘SHIELD RZ F1 (61-802)' led to similar yields as the non-grafted controls except for grafting with the grape tomato scion in fall planting. For vegetative and fruit biomass, both the “vegetative” and “generative” rootstocks had positive impacts except for the beefsteak tomato in fall planting. For fruit mineral composition, the “vegetative” and “generative” rootstocks, both highly vigorous, consistently elevated fruit P, K, Ca, Zn, and Fe contents on a dry weight basis, whereas the other rootstocks did not. Overall, although the more vigorous rootstocks enhanced tomato plant productivity and fruit minerals, the evidence presented here does not support the suggestion that the so-called “vegetative” and “generative” rootstocks have different impacts on tomato scion yield, biomass production, or fruit mineral contents. More studies with different production systems and environmental conditions as well as contrasting scion genotypes are needed to further categorize the impacts of rootstocks with different vigor and other characteristics on plant biomass production and their implications on fruit yield development.
more »
« less
Response of Hydroponic Tomato Yield and Yield-correlated Morphological Characteristics to Constant or Growth Stage-based Nutrient Management Strategies
In the United States, the annual revenue attributable to tomato production is $1 billion. However, tomato production can cause negative environmental impacts, such as water pollution, often in the form of eutrophication-causing nutrient pollution. Hydroponic production can decrease excess nutrient leaching; however, optimization of nutrient management and cultivar choices could further decrease excess nutrient discharges. The objectives of this study were as follows: to evaluate and compare the responses of tomato growth characteristics, yield, and yield components to two nutrient management regimes (varying nutrient solution concentrations by growth stage and the use of a constant nutrient solution concentration from transplant to termination), and to analyze the effects of growth habits among six cultivars (Big Beef, Cherokee Purple, Heatmaster, Legend, Mountain Fresh Plus, and Tropic) on tomato yield and yield-correlated morphological characteristics. The nutrient management strategies were applied to tomato plants, and data regarding yield and related morphological characteristics were obtained. Data were analyzed using SAS PROC GLM. An analysis revealed no significant difference in the total fruit weight/plant between nutrient management regimes (P= 0.05); however, the mean fruit weight (164.26 g) and diameter (71.70 mm) were significantly greater (P< 0.0001) for plants that received the constant concentration nutrient regime. Indeterminate plants had a significantly greater (P< 0.0001) mean fruit weight (192.76 g) and mean fruit diameter (76.42 mm). Among cultivars, Big Beef had a significantly greater (P< 0.05) total fruit weight/plant (9.25 kg). Applying a constant nutrient concentration to indeterminate cultivars, particularly Big Beef and Cherokee Purple, improved the factors analyzed and could decrease negative environmental impacts while increasing profits of the producers.
more »
« less
- Award ID(s):
- 2152218
- PAR ID:
- 10608794
- Publisher / Repository:
- American Society for Horticultural Science
- Date Published:
- Journal Name:
- HortScience
- Volume:
- 59
- Issue:
- 10
- ISSN:
- 0018-5345
- Page Range / eLocation ID:
- 1534 to 1542
- Subject(s) / Keyword(s):
- 'Big Beef' 'Cherokee Purple' cultivar growth stage-based ‘Heatmaster’ hydroponic ‘Legend’ ‘Mountain Fresh Plus’ nutrient solution nutrient use optimization Solanum lycopersicum tomato ‘Tropic’
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this study, the effects of grafting with interspecific hybrid rootstocks on field-grown tomato fruit quality were evaluated over a 2-year period. Fruit quality attributes from determinate ‘Florida 47’ tomato plants grafted onto either ‘Beaufort’ or ‘Multifort’ rootstocks were compared with those from non- and self-grafted controls. Grafted plants had higher fruit yields than non- and self-grafted plants, and increased production of marketable fruit by ≈41%. The increased yield was accompanied by few major differences in nutritional quality attributes measured for these fruit. Although grafting with the interspecific rootstocks led to consistently small, but significant increases of fruit moisture (≈0.6%), flavor attributes such as total titratable acidity (TTA) and the ratio of soluble solids content (SSC) to TTA were not significantly altered. Among the antioxidants evaluated, ascorbic acid concentration was reduced by 22% in fruit from grafted plants, but significant effects were not evident for either total phenolics or antioxidant capacity as assayed by oxygen radical absorbance capacity (ORAC). Levels of carotenoids (lycopene, β-carotene, and lutein) were similar in fruit from grafted plants with hybrid rootstocks compared with non- and self-grafted controls. Overall, the seasonal differences outweighed the grafting effects on fruit quality attributes. This study showed that grafting with interspecific hybrid rootstocks could be an effective horticultural technique for enhancing fruit yield of tomato plants. Despite the modest reduction in ascorbic acid content associated with the use of these rootstocks, grafting did not cause major negative impacts on fruit composition or nutritional quality of fresh-market tomatoes.more » « less
-
Societal Impact StatementGroundcherry (Physalis grisea) is a plant species grown for its flavorful fruit. The fruit drops from the plant, hence the common name groundcherry. This makes harvest cumbersome and puts the fruit at risk for carrying soil‐borne pathogens, therefore making them unsellable. Furthermore, insects often damage the plants, reducing yield. Advances in gene editing offer promise for addressing these issues and aiding home gardeners and farmers. Improvement will expand access to this nutritious fruit, rich in potassium, vitamin C, and antioxidants. Additionally, studies of its biology could serve as a model for improving other fruiting plants, particularly underutilized species. SummaryP. griseais an underutilized, semidomesticated fruit crop with rising agronomic value. Several resources have been developed for its use in fundamental biological research, including a plant transformation system and a high‐quality reference genome. Already,P. griseahas been used as a model to investigate biological phenomena including inflated calyx syndrome and gene compensation.P. griseahas also been used to demonstrate the potential of fast‐tracking domestication trait improvement through approaches such as CRISPR/Cas9 gene editing. This work has led to thePhysalisImprovement Project, which relies on reverse genetics to understand the mechanisms that underlie fruit abscission and plant–herbivore interactions to guide approaches for improvement of undesirable characteristics. CRISPR/Cas9 gene editing has been used to targetP. griseagenes that are suspected to act in fruit abscission, particularly orthologs of those that are reported in tomato abscission zone development. A similar approach is being taken to targetP. griseagenes involved in the withanolide biosynthetic pathway to determine the impact of withanolides on plant–herbivore interactions. Results from these research projects will lead to a greater understanding of important biological processes and will also generate knowledge needed to develop cultivars with reduced fruit drop and increased resistance to insect herbivory.more » « less
-
Growth and yield typically increase when tomato plants are grafted to selected interspecific hybrid rootstocks from which distinctive root system morphologies are envisioned to aid nutrient uptake. We assessed these relationships using a range of exogenous nitrogen (N) supplies under field production conditions. This study analyzed the impact of N on growth, root distribution, N uptake, and N use of determinate ‘Florida 47’ tomato plants grafted onto vigorous, interspecific, hybrid tomato rootstocks ‘Multifort’ and ‘Beaufort’. Six N rates, 56, 112, 168, 224, 280, and 336 kg·ha −1 , were applied to sandy soil in Live Oak, FL, during Spring 2010 and 2011. During both years, the leaf area index, aboveground biomass, and N accumulation (leaf blade, petiole, stem, and fruit) responded quadratically to the increase in N fertilizer rates. Averaged over the two seasons, the aboveground biomass, N accumulation, N use efficiency (NUE), and N uptake efficiency (NUpE) were ≈29%, 31%, 30%, and 33% greater in grafted plants than in nongrafted controls, respectively. More prominent increases occurred in the root length density (RLD) in the uppermost 15 cm of soil; for grafted plants, RLD values in this upper 15-cm layer were significantly greater than those of nongrafted plants during both years with an average increase of 69% over the two seasons. Across all the grafted and nongrafted plants, the RLD decreased along the soil profile, with ≈60% of the total RLD concentrated in the uppermost 0 to 15 cm of the soil layer. These results demonstrated a clear association between enhanced RLD, especially in the upper 15 cm of soil, and improvements in tomato plant growth, N uptake, and N accumulation with grafting onto vigorous rootstocks.more » « less
-
The increase in intensity and frequency of drought due to global climate change has increased the urgency of developing crop cultivars suitable for dry environments. Drought tolerance is a complex trait that involves numerous physiological, biochemical, and morphological responses. A better understanding of those mechanisms is critical to develop drought tolerant cultivars. In this study, we aimed to understand the morphophysiological changes at the shoot and root levels in response to drought stress of ten oat genotypes with diverse root morphological characteristics. Twenty-one-day old plants were subjected to drought stress in a greenhouse by withholding water for two weeks. Several characteristics including chlorophyll content, relative water content (RWC), stomatal conductance, stomata number, shoot dry weight (SDW), root dry weight (RDW), root-to-shoot biomass ratio (RSR), root length, root area, and root volume were measured on well-watered, and drought-stressed plants. Grain yield was evaluated by continuing the drought treatment with a drying and rewatering cycle every 15 days until physiological maturity. The water regime had a significant impact on all traits evaluated. A significant interaction between genotype and water treatment was observed for RWC, chlorophyll content, stomatal conductance, stomata number, and grain yield but not for root traits, suggesting that the root system of all genotypes responded similarly to drought stress. Hayden, the cultivar with the lowest reduction in grain yield from the drought treatment, was among the genotypes with the lowest reduction in RWC and chlorophyll content but with a sharp decrease in stomata number, thus indicating that regulating the plant water status and maintaining the photosynthesis level are important for oat plants to maintain grain yield under drought stress. The size of the root system was not correlated with grain yield under drought, but the RWC and grain yield were significantly correlated under drought, thus suggesting that maintaining the RWC is an important characteristic for oat plants to maintain yield under drought stress.more » « less
An official website of the United States government

