Privacy-preserving machine learning (PPML) enables multiple distrusting parties to jointly train ML models on their private data without revealing any information beyond the final trained models. In this work, we study the client-aided two-server setting where two non-colluding servers jointly train an ML model on the data held by a large number of clients. By involving the clients in the training process, we develop efficient protocols for training algorithms including linear regression, logistic regression, and neural networks. In particular, we introduce novel approaches to securely computing inner product, sign check, activation functions (e.g., ReLU, logistic function), and division on secret shared values, leveraging lightweight computation on the client side. We present constructions that are secure against semi-honest clients and further enhance them to achieve security against malicious clients. We believe these new client-aided techniques may be of independent interest. We implement our protocols and compare them with the two-server PPML protocols presented in SecureML (Mohassel and Zhang, S&P’17) across various settings and ABY2.0 (Patra et al., Usenix Security’21) theoretically. We demonstrate that with the assistance of untrusted clients in the training process, we can significantly improve both the communication and computational efficiency by orders of magnitude. Our protocols compare favorably in all the training algorithms on both LAN and WAN networks.
more »
« less
United We Stand: Accelerating Privacy-Preserving Neural Inference by Conjunctive Optimization with Interleaved Nexus
Privacy-preserving Machine Learning as a Service (MLaaS) enables the powerful cloud server to run its well-trained neural model upon the input from resource-limited client, with both of server's model parameters and client's input data protected. While computation efficiency is critical for the practical implementation of privacy-preserving MLaaS and it is inspiring to witness recent advances towards efficiency improvement, there still exists a significant performance gap to real-world applications. In general, state-of-the-art frameworks perform function-wise efficiency optimization based on specific cryptographic primitives. Although it is logical, such independent optimization for each function makes noticeable amount of expensive operations unremovable and misses the opportunity to further accelerate the performance by jointly considering privacy-preserving computation among adjacent functions. As such, we propose COIN: Conjunctive Optimization with Interleaved Nexus, which remodels mainstream computation for each function to conjunctive counterpart for composite function, with a series of united optimization strategies. Specifically, COIN jointly computes a pair of consecutive nonlinear-linear functions in the neural model by reconstructing the intermediates throughout the whole procedure, which not only eliminates the most expensive crypto operations without invoking extra encryption enabler, but also makes the online crypto complexity independent of filter size. Experimentally, COIN demonstrates 11.2x to 29.6x speedup over various function dimensions from modern networks, and 6.4x to 12x speedup on the total computation time when applied in networks with model input from small-scale CIFAR10 to large-scale ImageNet.
more »
« less
- Award ID(s):
- 2413009
- PAR ID:
- 10608891
- Publisher / Repository:
- AAAI-2024-1
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 38
- Issue:
- 15
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 16794 to 16802
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the past decade, we have witnessed an exponential growth of deep learning models, platforms, and applications. While existing DL applications and Machine Learning as a service (MLaaS) frameworks assume fully trusted models, the need for privacy-preserving DNN evaluation arises. In a secure multi-party computation scenario, both the model and the data are considered proprietary, i.e., the model owner does not want to reveal the highly valuable DL model to the user, while the user does not wish to disclose their private data samples either. Conventional privacy-preserving deep learning solutions ask the users to send encrypted samples to the model owners, who must handle the heavy lifting of ciphertext-domain computation with homomorphic encryption. In this paper, we present a novel solution, namely, PrivDNN, which (1) offloads the computation to the user side by sharing an encrypted deep learning model with them, (2) significantly improves the efficiency of DNN evaluation using partial DNN encryption, (3) ensures model accuracy and model privacy using a core neuron selection and encryption scheme. Experimental results show that PrivDNN reduces privacy-preserving DNN inference time and memory requirement by up to 97% while maintaining model performance and privacy. Codes can be found at https://github.com/LiangqinRen/PrivDNNmore » « less
-
Word-wise Fully Homomorphic Encryption (FHE) schemes, such as CKKS, are gaining significant traction due to their ability to provide post-quantum-resistant, privacy preserving approximate computing—an especially desirable feature in the Machine-Learning-as-a-Service (MLaaS) paradigm. In this work, we introduce FIDESlib, the first open-source server-side CKKS GPU library that is fully interoperable with well-established client-side OpenFHE operations. Unlike other existing open-source GPU libraries, FIDESlib provides the first implementation featuring heavily optimized GPU kernels for all CKKS primitives, including bootstrapping. Our library also integrates robust benchmarking and testing, ensuring it remains adaptable to further optimization. Comparing our scheme against Phantom (the previously top open-source CKK library, we show that FIDESlib offers superior performance and scalability. For bootstrapping, FIDESlib achieves no less than 70× speedup over the AVX-optimized OpenFHE implementation. FIDESlib is available on Github.more » « less
-
Deconvolution is a key component in contemporary neural networks, especially generative adversarial networks (GANs) and fully convolutional networks (FCNs). Due to extra operations of deconvolution compared to convolution, considerable degradation of performance as well as energy efficiency is incurred when implementing deconvolution on the existing resistive random access memory (ReRAM)-based processing-in-memory (PIM) accelerators. In this work, we propose a ReRAM-based accelerator design, RED, for providing high-performance and low-energy deconvolution. We analyze the deconvolution execution on the existing ReRAM-based PIMs and utilize its interior computation pattern for design optimization. RED includes two major contributions: pixel-wise mapping scheme and zero-skipping data flow. Pixel-wise mapping scheme removes the zero insertion and performs convolutions over several ReRAM arrays and thus enables parallel computations with non-zero inputs. Zero-skipping data flow, assisted with customized input buffers design, enhances the computation parallelism and input data reuse. In evaluation, we compare RED against the existing ReRAM-based PIMs and CMOS-based counterpart with a variety of GAN and FCN models, each of which contains multiple deconvolution layers. The experimental results show that RED achieves a 4.0×-56.16× speedup and a 1.05×-18.17× energy efficiency improvement over previous related accelerator designs.more » « less
-
Zero knowledge Neural Networks draw increasing attention for guaranteeing computation integrity and privacy of neural networks (NNs) based on zero-knowledge Succinct Non-interactive ARgument of Knowledge (zkSNARK) security scheme. However, the performance of zkSNARK NNs is far from optimal due to the million-scale circuit computation with heavy scalar-level dependency. In this paper, we propose a type-based optimizing framework for efficient zero-knowledge NN inference, namely ZENO (ZEro knowledge Neural network Optimizer). We first introduce ZENO language construct to maintain high-level semantics and the type information (e.g., privacy and tensor) for allowing more aggressive optimizations. We then propose privacytype driven and tensor-type driven optimizations to further optimize the generated zkSNARK circuit. Finally, we design a set of NN-centric system optimizations to further accelerate zkSNARK NNs. Experimental results show that ZENO achieves up to 8.5× end-to-end speedup than state-of-the-art zkSNARK NNs. We reduce proof time for VGG16 from 6 minutes to 48 seconds, which makes zkSNARK NNs practical.more » « less
An official website of the United States government

