The ALMA-IMF Large Program provides multi-tracer observations of 15 Galactic massive protoclusters at a matched sensitivity and spatial resolution. We focus on the dense gas kinematics of the G353.41 protocluster traced by N2H+(1−0), with a spatial resolution of ~0.02 pc. G353.41, at a distance of ~2kpc, is embedded in a larger-scale (~8 pc) filament and has a mass of ~2.5 × 103M⊙within 1.3 × 1.3 pc2. We extracted the N2H+(1−0) isolated line component and decomposed it by fitting up to three Gaussian velocity components. This allows us to identify velocity structures that are either muddled or impossible to identify in the traditional position-velocity diagram. We identify multiple velocity gradients on large (~1 pc) and small scales (~0.2pc). We find good agreement between the N2H+velocities and the previously reported DCN core velocities, suggesting that cores are kinematically coupled with the dense gas in which they form. We have measured nine converging “V-shaped” velocity gradients (VGs) (~20 km s−1pc−1) that are well resolved (sizes ~0.1 pc), mostly located in filaments, which are sometimes associated with cores near their point of convergence. We interpret these V-shapes as inflowing gas feeding the regions near cores (the immediate sites of star formation). We estimated the timescales associated with V-shapes as VG−1, and we interpret them as inflow timescales. The average inflow timescale is ~67 kyr, or about twice the free-fall time of cores in the same area (~33 kyr) but substantially shorter than protostar lifetime estimates (~0.5 Myr). We derived mass accretion rates in the range of (0.35–8.77) × 10−4M⊙yr−1. This feeding might lead to further filament collapse and the formation of new cores. We suggest that the protocluster is collapsing on large scales, but the velocity signature of collapse is slow compared to pure free-fall. Thus, these data are consistent with a comparatively slow global protocluster contraction under gravity, and faster core formation within, suggesting the formation of multiple generations of stars over the protocluster’s lifetime.
more »
« less
This content will become publicly available on May 22, 2026
Probing the Kinematics of Multiple- and Single-protostar Systems in Perseus with N 2 H +
Abstract We analyze the dense gas kinematics in two class 0/I protostellar cores, Per 30 and NGC 1333 IRAS 7, in the Perseus Molecular Cloud to determine whether their velocity structures are indicative of rotation. We examine the hyperfine structure of the N2H+J= 1–0 transition by combining 3″ (900 au) Atacama Large Millimeter/submillimeter Array measurements with 9″ (2700 au) measurements from the Green Bank Telescope. We use theCASA Feathermethod to combine these data in order to maximize our sensitivity across spatial scales. We fit the N2H+spectra to constrain the centroid velocity of the gas at each pixel and use these values to calculate the linear velocity gradient and specific angular momentum within apertures centered on each protostar with radii ranging from 5″ to 60″. Our results indicate that the velocity structure probed by the N2H+emission is likely not a result of core rotation. These findings are consistent with other studies in the literature that indicate rotation is often not evident on scales ≲1000 au. We instead suggest that the velocity structure we see is a result of torques caused by irregular density distributions in these protostellar systems.
more »
« less
- Award ID(s):
- 2307199
- PAR ID:
- 10608957
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 985
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 171
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Protostellar disks are an ubiquitous part of the star formation process and the future sites of planet formation. As part of the Early Planet Formation in Embedded Disks large program, we present high angular resolution dust continuum (∼40 mas) and molecular line (∼150 mas) observations of the Class 0 protostar IRAS 15398–3359. The dust continuum is small, compact, and centrally peaked, while more extended dust structures are found in the outflow directions. We perform a 2D Gaussian fitting and find the deconvolved size and 2σradius of the dust disk to be 4.5 × 2.8 au and 3.8 au, respectively. We estimate the gas+dust disk mass assuming optically thin continuum emission to be 0.6MJ–1.8MJ, indicating a very low mass disk. The CO isotopologues trace components of the outflows and inner envelope, while SO traces a compact, rotating disk-like component. Using several rotation curve fittings on the position–velocity diagram of the SO emission, the lower limits of the protostellar mass and gas disk radius are 0.022M⊙and 31.2 au, respectively, from our Modified 2 single power-law fitting. A conservative upper limit of the protostellar mass is inferred to be 0.1M⊙. The protostellar mass accretion rate and the specific angular momentum at the protostellar disk edge are found to be in the range of (1.3–6.1) × 10−6M⊙yr−1and (1.2–3.8) × 10−4km s−1pc, respectively, with an age estimated between 0.4 × 104yr and 7.5 × 104yr. At this young age with no clear substructures in the disk, planet formation would likely not yet have started. This study highlights the importance of high-resolution observations and systematic fitting procedures when deriving dynamical properties of deeply embedded Class 0 protostars.more » « less
-
Abstract Precise estimates of protostellar masses are crucial to characterize the formation of stars of low masses down to brown dwarfs (BDs;M*< 0.08M☉). The most accurate estimation of protostellar mass uses the Keplerian rotation in the circumstellar disk around the protostar. To apply the Keplerian rotation method to a protostar at the low-mass end, we have observed the Class 0 protostar IRAS 16253-2429 using the Atacama Large Millimeter/submillimeter Array (ALMA) in the 1.3 mm continuum at an angular resolution of 0.″07 (10 au), and in the12CO, C18O,13CO (J= 2–1), and SO (JN= 65−54) molecular lines, as part of the ALMA Large Program Early Planet Formation in Embedded Disks project. The continuum emission traces a nonaxisymmetric, disk-like structure perpendicular to the associated12CO outflow. The position–velocity (PV) diagrams in the C18O and13CO lines can be interpreted as infalling and rotating motions. In contrast, the PV diagram along the major axis of the disk-like structure in the12CO line allows us to identify Keplerian rotation. The central stellar mass and the disk radius are estimated to be ∼0.12–0.17M☉and ∼13–19 au, respectively. The SO line suggests the existence of an accretion shock at a ring (r∼ 28 au) surrounding the disk and a streamer from the eastern side of the envelope. IRAS 16253-2429 is not a proto-BD but has a central stellar mass close to the BD mass regime, and our results provide a typical picture of such very-low-mass protostars.more » « less
-
Abstract Detecting planet signatures in protoplanetary disks is fundamental to understanding how and where planets form. In this work, we report dust and gas observational hints of planet formation in the disk around 2MASS J16120668-301027, as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Large Program “AGE-PRO: ALMA survey of Gas Evolution in Protoplanetary disks.” The disk was imaged with the ALMA at Band 6 (1.3 mm) in dust continuum emission and four molecular lines:12CO(J= 2–1),13CO(J= 2–1), C18O(J= 2–1), and H2CO(J= 3(3,0)–2(2,0)). Resolved observations of the dust continuum emission (angular resolution of ∼150 mas, 20 au) show a ring-like structure with a peak at 0.″57 (75 au), a deep gap with a minimum at 0.″24 (31 au), an inner disk, a bridge connecting the inner disk and the outer ring, along with a spiral arm structure, and a tentative detection (to 3σ) of a compact emission at the center of the disk gap, with an estimated dust mass of ∼2.7−12.9 Lunar masses. We also detected a kinematic kink (not coincident with any dust substructure) through several12CO channel maps (angular resolution ∼200 mas, 30 au), located at a radius of ∼0.″875 (115.6 au). After modeling the12CO velocity rotation around the protostar, we identified a purple tentative rotating-like structure at the kink location with a geometry similar to that of the disk. We discuss potential explanations for the dust and gas substructures observed in the disk and their potential connection to signatures of planet formation.more » « less
-
We present the first results from “Surveying the Whirlpool at Arcseconds with NOEMA” (SWAN), an IRAM Northern Extended Millimetre Array (NOEMA)+30 m large program that maps emission from several molecular lines at 90 and 110 GHz in the iconic nearby grand-design spiral galaxy M 51 at a cloud-scale resolution (∼3″ = 125 pc). As part of this work, we have obtained the first sensitive cloud-scale map of N2H+(1–0) of the inner ∼5 × 7 kpc of a normal star-forming galaxy, which we compared to HCN(1–0) and12CO(1–0) emission to test their ability in tracing dense, star-forming gas. The average N2H+-to-HCN line ratio of our total FoV is 0.20 ± 0.09, with strong regional variations of a factor of ≳2 throughout the disk, including the south-western spiral arm and the center. The central ∼1 kpc exhibits elevated HCN emission compared to N2H+, probably caused by AGN-driven excitation effects. We find that HCN and N2H+are strongly super-linearily correlated in intensity (ρSp ∼ 0.8), with an average scatter of ∼0.14 dex over a span of ≳1.5 dex in intensity. When excluding the central region, the data are best described by a power law of an exponent of 1.2, indicating that there is more N2H+per unit HCN in brighter regions. Our observations demonstrate that the HCN-to-CO line ratio is a sensitive tracer of gas density in agreement with findings of recent galactic studies utilising N2H+. The peculiar line ratios present near the AGN and the scatter of the power-law fit in the disk suggest that in addition to a first-order correlation with gas density, second-order physics (such as optical depth, gas temperature) or chemistry (abundance variations) are encoded in the N2H+/12CO, HCN/12CO, and N2H+/HCN ratios.more » « less
An official website of the United States government
