This work provides the first theoretical study on the ability of graph Message Passing Neural Networks (gMPNNs) -- such as Graph Neural Networks (GNNs) -- to perform inductive out-of-distribution (OOD) link prediction tasks, where deployment (test) graph sizes are larger than training graphs. We first prove non-asymptotic bounds showing that link predictors based on permutation-equivariant (structural) node embeddings obtained by gMPNNs can converge to a random guess as test graphs get larger. We then propose a theoretically-sound gMPNN that outputs structural pairwise (2-node) embeddings and prove non-asymptotic bounds showing that, as test graphs grow, these embeddings converge to embeddings of a continuous function that retains its ability to predict links OOD. Empirical results on random graphs show agreement with our theoretical results.
more »
« less
This content will become publicly available on July 13, 2026
Towards characterizing the value of edge embeddings in GNNs
Graph neural networks (GNNs) are the dominant approach to solving machine learning problems defined over graphs. Despite much theoretical and empirical work in recent years, our understanding of finer-grained aspects of architectural design for GNNs remains impoverished. In this paper, we consider the benefits of architectures that maintain and update edge embeddings. On the theoretical front, under a suitable computational abstraction for a layer in the model, as well as memory constraints on the embeddings, we show that there are natural tasks on graphical models for which architectures leveraging edge embeddings can be much shallower. Our techniques are inspired by results on time-space tradeoffs in theoretical computer science. Empirically, we show architectures that maintain edge embeddings almost always improve on their node-based counterparts—frequently significantly so in topologies that have “hub” nodes.
more »
« less
- Award ID(s):
- 2403275
- PAR ID:
- 10609090
- Publisher / Repository:
- International Conference on Machine Learning (ICML), 2025
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Demeniconi, C.; Davidson, I (Ed.)Many irregular domains such as social networks, financial transactions, neuron connections, and natural language constructs are represented using graph structures. In recent years, a variety of graph neural networks (GNNs) have been successfully applied for representation learning and prediction on such graphs. In many of the real-world applications, the underlying graph changes over time, however, most of the existing GNNs are inadequate for handling such dynamic graphs. In this paper we propose a novel technique for learning embeddings of dynamic graphs using a tensor algebra framework. Our method extends the popular graph convolutional network (GCN) for learning representations of dynamic graphs using the recently proposed tensor M-product technique. Theoretical results presented establish a connection between the proposed tensor approach and spectral convolution of tensors. The proposed method TM-GCN is consistent with the Message Passing Neural Network (MPNN) framework, accounting for both spatial and temporal message passing. Numerical experiments on real-world datasets demonstrate the performance of the proposed method for edge classification and link prediction tasks on dynamic graphs. We also consider an application related to the COVID-19 pandemic, and show how our method can be used for early detection of infected individuals from contact tracing data.more » « less
-
Graph neural networks (GNNs) have shown great potential in learning on graphs, but they are known to perform sub-optimally on link prediction tasks. Existing GNNs are primarily designed to learn node-wise representations and usually fail to capture pairwise relations between target nodes, which proves to be crucial for link prediction. Recent works resort to learning more expressive edge-wise representations by enhancing vanilla GNNs with structural features such as labeling tricks and link prediction heuristics, but they suffer from high computational overhead and limited scalability. To tackle this issue, we propose to learn structural link representations by augmenting the message-passing framework of GNNs with Bloom signatures. Bloom signatures are hashing-based compact encodings of node neighborhoods, which can be efficiently merged to recover various types of edge-wise structural features. We further show that any type of neighborhood overlap-based heuristic can be estimated by a neural network that takes Bloom signatures as input. GNNs with Bloom signatures are provably more expressive than vanilla GNNs and also more scalable than existing edge-wise models. Experimental results on five standard link prediction benchmarks show that our proposed model achieves comparable or better performance than existing edge-wise GNN models while being 3-200 × faster and more memory-efficient for online inference.more » « less
-
null (Ed.)Message passing Graph Neural Networks (GNNs) provide a powerful modeling framework for relational data. However, the expressive power of existing GNNs is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test, which means GNNs that are not able to predict node clustering coefficients and shortest path distances, and cannot differentiate between different d regular graphs. Here we develop a class of message passing GNNs, named Identity-aware Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL test. ID-GNN offers a minimal but powerful solution to limitations of existing GNNs. ID-GNN extends existing GNN architectures by inductively considering nodes’ identities during message passing. To embed a given node, IDGNN first extracts the ego network centered at the node, then conducts rounds of heterogeneous message passing, where different sets of parameters are applied to the center node than to other surrounding nodes in the ego network. We further propose a simplified but faster version of ID-GNN that injects node identity information as augmented node features. Altogether, both versions of ID GNN represent general extensions of message passing GNNs, where experiments show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks; 3% accuracy improvement on node and graph classification benchmarks; and 15% ROC AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs demonstrate improved or comparable performance over other task-specific graph networks.more » « less
-
null (Ed.)Message passing Graph Neural Networks (GNNs) provide a powerful modeling framework for relational data. However, the expressive power of existing GNNs is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test, which means GNNs that are not able to predict node clustering coefficients and shortest path distances, and cannot differentiate between different d-regular graphs. Here we develop a class of message passing GNNs, named Identity-aware Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL test. ID-GNN offers a minimal but powerful solution to limitations of existing GNNs. ID-GNN extends existing GNN architectures by inductively considering nodes’ identities during message passing. To embed a given node, IDGNN first extracts the ego network centered at the node, then conducts rounds of heterogeneous message passing, where different sets of parameters are applied to the center node than to other surrounding nodes in the ego network. We further propose a simplified but faster version of ID-GNN that injects node identity information as augmented node features. Altogether, both versions of ID-GNN represent general extensions of message passing GNNs, where experiments show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks; 3% accuracy improvement on node and graph classification benchmarks; and 15% ROC AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs demonstrate improved or comparable performance over other task-specific graph networks.more » « less
An official website of the United States government
