Abstract Influenza A viruses in wild birds pose threats to the poultry industry, wild birds, and human health under certain conditions. Of particular importance are wild waterfowl, which are the primary reservoir of low‐pathogenicity influenza viruses that ultimately cause high‐pathogenicity outbreaks in poultry farms. Despite much work on the drivers of influenza A virus prevalence, the underlying viral subtype dynamics are still mostly unexplored. Nevertheless, understanding these dynamics, particularly for the agriculturally significant H5 and H7 subtypes, is important for mitigating the risk of outbreaks in domestic poultry farms. Here, using an expansive surveillance database, we take a large‐scale look at the spatial, temporal, and taxonomic drivers in the prevalence of these two subtypes among influenza A‐positive wild waterfowl. We document spatiotemporal trends that are consistent with past work, particularly an uptick in H5 viruses in late autumn and H7 viruses in spring. Interestingly, despite large species differences in temporal trends in overall influenza A virus prevalence, we document only modest differences in the relative abundance of these two subtypes and little, if any, temporal differences among species. As such, it appears that differences in species' phenology, physiology, and behaviors that influence overall susceptibility to influenza A viruses play a much lesser role in relative susceptibility to different subtypes. Instead, species are likely to freely pass viruses among each other regardless of subtype. Importantly, despite the similarities among species documented here, individual species still may play important roles in moving viruses across large geographic areas or sustaining local outbreaks through their different migratory behaviors. 
                        more » 
                        « less   
                    
                            
                            Neu5Gc binding loss of subtype H7 influenza A virus facilitates adaptation to gallinaceous poultry following transmission from waterbirds
                        
                    
    
            ABSTRACT Between 2013 and 2018, the novel A/Anhui/1/2013 (AH/13)-lineage H7N9 virus caused at least five waves of outbreaks in humans, totaling 1,567 confirmed human cases in China. Surveillance data indicated a disproportionate distribution of poultry infected with this AH/13-lineage virus, and laboratory experiments demonstrated that this virus can efficiently spread among chickens but not among Pekin ducks. The underlying mechanism of this selective transmission remains unclear. In this study, we demonstrated the absence of Neu5Gc expression in chickens across all respiratory and gastrointestinal tissues. However, Neu5Gc expression varied among different duck species and even within the tissues of the same species. The AH/13-lineage viruses exclusively bind to acetylneuraminic acid (Neu5Ac), in contrast to wild waterbird H7 viruses that bind both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). The level of Neu5Gc expression influences H7 virus replication and facilitates adaptive mutations in these viruses. In summary, our findings highlight the critical role of Neu5Gc in affecting the host range and interspecies transmission dynamics of H7 viruses among avian species.IMPORTANCEMigratory waterfowl, gulls, and shorebirds are natural reservoirs for influenza A viruses (IAVs) that can occasionally spill over to domestic poultry, and ultimately humans. This study showed wild-type H7 IAVs from waterbirds initially bind to glycan receptors terminated with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). However, after enzootic transmission in chickens, the viruses exclusively bind to Neu5Ac. The absence of Neu5Gc expression in gallinaceous poultry, particularly chickens, exerts selective pressure, shaping IAV populations, and promoting the acquisition of adaptive amino acid substitutions in the hemagglutinin protein. This results in the loss of Neu5Gc binding and an increase in virus transmissibility in gallinaceous poultry, particularly chickens. Consequently, the transmission capability of these poultry-adapted H7 IAVs in wild water birds decreases. Timely intervention, such as stamping out, may help reduce virus adaptation to domestic chicken populations and lower the risk of enzootic outbreaks, including those caused by IAVs exhibiting high pathogenicity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2109745
- PAR ID:
- 10609112
- Editor(s):
- Subbarao, Kanta
- Publisher / Repository:
- Wan, XF
- Date Published:
- Journal Name:
- Journal of Virology
- Volume:
- 98
- Issue:
- 10
- ISSN:
- 0022-538X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The wild to domestic bird interface is an important nexus for emergence and transmission of highly pathogenic avian influenza (HPAI) viruses. Although the recent incursion of HPAI H5N1 Clade 2.3.4.4b into North America calls for emergency response and planning given the unprecedented scale, readily available data-driven models are lacking. Here, we provide high resolution spatial and temporal transmission risk models for the contiguous United States. Considering virus host ecology, we included weekly species-level wild waterfowl (Anatidae) abundance and endemic low pathogenic avian influenza virus prevalence metrics in combination with number of poultry farms per commodity type and relative biosecurity risks at two spatial scales: 3 km and county-level. Spillover risk varied across the annual cycle of waterfowl migration and some locations exhibited persistent risk throughout the year given higher poultry production. Validation using wild bird introduction events identified by phylogenetic analysis from 2022 to 2023 HPAI poultry outbreaks indicate strong model performance. The modular nature of our approach lends itself to building upon updated datasets under evolving conditions, testing hypothetical scenarios, or customizing results with proprietary data. This research demonstrates an adaptive approach for developing models to inform preparedness and response as novel outbreaks occur, viruses evolve, and additional data become available.more » « less
- 
            Abstract Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants.more » « less
- 
            Aquatic habitats provide a bridge for influenza transmission among wild and domestic species. However, water sources pose highly variable physicochemical and ecological characteristics that affect avian influenza virus (AIV) stability. Therefore, the risk of survival or transmissibility of AIV in the environment is quite variable and has been understudied. In this study, we determine the risk of waterborne transmission and environmental persistence of AIV in a wild/domestic bird interface in the Central Mexico plateau (North America) during the winter season using a multi-criteria decision analysis (MCDA). A total of 13 eco-epidemiological factors were selected from public-access databases to develop the risk assessment. The MCDA showed that the Atarasquillo wetland presents a higher persistence risk in January. Likewise, most of the backyard poultry farms at this wild-domestic interface present a high persistence risk (50%). Our results suggest that drinking water may represent a more enabling environment for AIV persistence in contrast with wastewater. Moreover, almost all backyard poultry farms evidence a moderate or high risk of waterborne transmission especially farms close to water bodies. The wildlife/domestic bird interface on the Atarasquillo wetland holds eco-epidemiological factors such as the presence of farms in flood-prone areas, the poultry access to outdoor water, and the use of drinking-water troughs among multiple animal species that may enhance waterborne transmission of AIV. These findings highlight the relevance of understanding the influence of multiple factors on AIV ecology for early intervention and long-term control strategies.more » « less
- 
            Highly pathogenic avian influenza (HPAI) viruses cross species barriers and have the potential to cause pandemics. In North America, HPAI A(H5N1) viruses related to the goose/Guangdong 2.3.4.4b hemagglutinin phylogenetic clade have infected wild birds, poultry, and mammals. Our genomic analysis and epidemiological investigation showed that a reassortment event in wild bird populations preceded a single wild bird–to-cattle transmission episode. The movement of asymptomatic or presymptomatic cattle has likely played a role in the spread of HPAI within the United States dairy herd. Some molecular markers that may lead to changes in transmission efficiency and phenotype were detected at low frequencies. Continued transmission of H5N1 HPAI within dairy cattle increases the risk for infection and subsequent spread of the virus to human populations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    