skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 4, 2025

Title: Isocyanide Substituent Influences Reductive Elimination versus Migratory Insertion in Reaction with an [Fe 2 (μ-H) 2 ] 2+ Complex
Iron hydrides are proposed reactive intermediates for N2 and CO conversion in industrial and biological processes. Here, we report a reactivity study of a low-coordinate di(μ-hydrido)diiron(II) complex, Fe2(μ-H)2L, where L2– is a bis(β-diketiminate) cyclophane, with isocyanides, which have electronic structures related to N2 and CO. The reaction outcome is influenced by the isocyanide substituent, with 2,6-xylyl isocyanide leading to H2 loss, to form a bis(μ-1,1-isocyanide)diiron(I) complex, whereas all of the other tested isocyanides insert into the Fe–H bond to give (μ-1,2-iminoformyl) complexes. Steric bulk of the isocyanide substituent determines the extent of insertion (i.e., into one or both Fe–H–Fe units) with tert-butyl isocyanide reacting to yield the mono-(μ-1,2-iminoformyl)diiron(II) complex, exclusively, and isopropyl- and methyl isocyanides affording the bis(μ-1,2-iminoformyl)diiron(II) products. Treatment of Fe2(μ-1,2-CHNtBu)(μ-H)L with 2,6-xylyl isocyanide (or XylNC) yields Fe2(μ-XylNC)2L and tert-butylaldimine as one of the organic products.  more » « less
Award ID(s):
2102098
PAR ID:
10609359
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
63
Issue:
44
ISSN:
0020-1669
Page Range / eLocation ID:
21083-21091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry. 
    more » « less
  2. null (Ed.)
    The bis(imido) complexes (BDI)Nb(N t Bu) 2 and (BDI)Nb(N t Bu)(NAr) (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate; Ar = 2,6-diisopropylphenyl) were shown to engage in 1,2-addition and [2 + 2] cycloaddition reactions with a wide variety of substrates. Reaction of the bis(imido) complexes with dihydrogen, silanes, and boranes yielded hydrido-amido-imido complexes via 1,2-addition across Nb-imido π-bonds; some of these complexes were shown to further react via insertion of carbon dioxide to give formate-amido-imido products. Similarly, reaction of (BDI)Nb(N t Bu) 2 with tert -butylacetylene yielded an acetylide-amido-imido complex. In contrast to these results, many related mono(imido) Nb BDI complexes do not exhibit 1,2-addition reactivity, suggesting that π-loading plays an important role in activating the Nb–N π-bonds toward addition. The same bis(imido) complexes were also shown to engage in [2 + 2] cycloaddition reactions with oxygen- and sulfur-containing heteroallenes to give carbamate- and thiocarbamate-imido complexes: some of these complexes readily dimerized to give bis-μ-sulfido, bis-μ-iminodicarboxylate, and bis-μ-carbonate complexes. The mononuclear carbamate imido complex (BDI)Nb(NAr)(N( t Bu)CO 2 ) ( 12 ) could be induced to eject tert -butylisocyanate to generate a four-coordinate terminal oxo imido intermediate, which could be trapped as the five-coordinate pyridine or DMAP adduct. The DMAP adducted oxo imido complex (BDI)NbO(NAr)(DMAP) ( 16 ) was shown to engage in 1,2-addition of silanes across the Nb-oxo π-bond; this represents a new reaction pathway in group 5 chemistry. 
    more » « less
  3. Fischer–Tropsch conversion of syngas to hydrocarbons is proposed to begin with CO binding to the iron surface of the catalyst. CO adsorption on various iron facets of relevance to the Fischer–Tropsch process suggest that the Fe(111) surface is the most active for catalysis, and that CO bound to the penultimate layer of Fe atoms or the b-state is the resting state during catalysis. Notably, a μ-1,2 mode was discarded for the b-state due to a lack of exemplar molecular species and expectation that such a mode would have a higher energy infrared (IR) absorption than observed experimentally (viz. 1735–1860 cm–1). Here, we report the synthesis of a diiron(I/II) complex in which CO binds μ-1,2: (Fe(OTf))(Fe(THF)(μ-1,2-CO))L where L2– is a bis(β-diketiminate) cyclophane (1). Surprisingly, the observed νCO at 1763 cm–1 for 1 compares well with that reported for b-state. Electron paramagnetic resonance (EPR), Mössbauer, and density functional theory (DFT) results support a weakly coupled s = 3/2 iron(I) and s = 2 iron(II) pair. Reduction of 1 results in C–O cleavage and C–C bond formation to yield a ketenylidene (CCO) complex as a major product observed spectroscopically. 
    more » « less
  4. Treatment of the scandium(II) metallocene Cpttt2Sc (Cpttt = C5H2tBu3) with CO or the isocyanide CNXyl (Xyl = C6H3Me2-2,6) yields the carbonyl complex Cpttt2Sc(CO), 1, or the isocyanide complex Cpttt2Sc(CNXyl), 2, which were identified by X-ray crystallography. Isotopic labeling with 13CO shows the CO stretch of 1 at 1875 cm−1 shifts to 1838 cm−1 in 1-13CO. The CN stretch in 2 is shifted to 1939 cm−1 compared to 2118 cm−1 for the free isocyanide. The 80.1 MHz (28.7 G) 45Sc hyperfine coupling in 1 and 74.7 MHz (26.8 G) in 2 are similar to the 82.6 MHz (29.6 G) coupling constant in Cpttt2Sc and indicate that 1 and 2 are Sc(II) complexes. A comprehensive analysis of the electronic structures of 1 and 2 using DFT calculations is reported. 
    more » « less
  5. null (Ed.)
    Isocyanoazulenes (CNAz) constitute a relatively new class of isocyanoarenes that offers rich structural and electronic diversification of the organic isocyanide ligand platform. This article considers a series of 2-isocyano-1,3-X2-azulene ligands (X = H, Me, CO2Et, Br, and CN) and the corresponding zero-valent complexes thereof, [(OC)5Cr(2-isocyano-1,3-X2-azulene)]. Air- and thermally stable, X-ray structurally characterized 2-isocyano-1,3-dimethylazulene may be viewed as a non-benzenoid aromatic congener of 2,6-dimethyphenyl isocyanide (2,6-xylyl isocyanide), a longtime “workhorse” aryl isocyanide ligand in coordination chemistry. Single crystal X-ray crystallographic {Cr–CNAz bond distances}, cyclic voltametric {E1/2(Cr0/1+)}, 13C NMR {δ(13CN), δ(13CO)}, UV-vis {dπ(Cr) → pπ*(CNAz) Metal-to-Ligand Charge Transfer}, and FTIR {νN≡C, νC≡O, kC≡O} analyses of the [(OC)5Cr(2-isocyano-1,3-X2-azulene)] complexes provided a multifaceted, quantitative assessment of the π-acceptor/σ-donor characteristics of the above five 2-isocyanoazulenes. In particular, the following inverse linear relationships were documented: δ(13COtrans) vs. δ(13CN), δ(13COcis) vs. δ(13CN), and δ(13COtrans) vs. kC≡O,trans force constant. Remarkably, the net electron withdrawing capability of the 2-isocyano-1,3-dicyanoazulene ligand rivals those of perfluorinated isocyanides CNC6F5 and CNC2F3. 
    more » « less