Abstract The joint analysis of spatial and temporal processes poses computational challenges due to the data's high dimensionality. Furthermore, such data are commonly non-Gaussian. In this paper, we introduce a copula-based spatiotemporal model for analyzing spatiotemporal data and propose a semiparametric estimator. The proposed algorithm is computationally simple, since it models the marginal distribution and the spatiotemporal dependence separately. Instead of assuming a parametric distribution, the proposed method models the marginal distributions nonparametrically and thus offers more flexibility. The method also provides a convenient way to construct both point and interval predictions at new times and locations, based on the estimated conditional quantiles. Through a simulation study and an analysis of wind speeds observed along the border between Oregon and Washington, we show that our method produces more accurate point and interval predictions for skewed data than those based on normality assumptions. 
                        more » 
                        « less   
                    This content will become publicly available on April 22, 2026
                            
                            Multiple Changepoint Detection for Non‐Gaussian Time Series
                        
                    
    
            ABSTRACT This article combines methods from existing techniques to identify multiple changepoints in non‐Gaussian autocorrelated time series. A transformation is used to convert a Gaussian series into a non‐Gaussian series, enabling penalized likelihood methods to handle non‐Gaussian scenarios. When the marginal distribution of the data is continuous, the methods essentially reduce to the change of variables formula for probability densities. When the marginal distribution is count‐oriented, Hermite expansions and particle filtering techniques are used to quantify the scenario. Simulations demonstrating the efficacy of the methods are given and two data sets are analyzed: 1) the proportion of home runs hit by Major League Baseball batters from 1920 to 2023 and 2) a six‐dimensional series of tropical cyclone counts from the Earth's basins of generation from 1980 to 2023. In the first series, beta marginal distributions are used to describe the proportions; in the second, Poisson marginal distributions seem appropriate. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2113592
- PAR ID:
- 10609454
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Time Series Analysis
- ISSN:
- 0143-9782
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The analysis of time series data with detection limits is challenging due to the high‐dimensional integral involved in the likelihood. Existing methods are either computationally demanding or rely on restrictive parametric distributional assumptions. We propose a semiparametric approach, where the temporal dependence is captured by parametric copula, while the marginal distribution is estimated non‐parametrically. Utilizing the properties of copulas, we develop a new copula‐based sequential sampling algorithm, which provides a convenient way to calculate the censored likelihood. Even without full parametric distributional assumptions, the proposed method still allows us to efficiently compute the conditional quantiles of the censored response at a future time point, and thus construct both point and interval predictions. We establish the asymptotic properties of the proposed pseudo maximum likelihood estimator, and demonstrate through simulation and the analysis of a water quality data that the proposed method is more flexible and leads to more accurate predictions than Gaussian‐based methods for non‐normal data.The Canadian Journal of Statistics47: 438–454; 2019 © 2019 Statistical Society of Canadamore » « less
- 
            Count time series are widely encountered in practice. As with continuous valued data, many count series have seasonal properties. This article uses a recent advance in stationary count time series to develop a general seasonal count time series modeling paradigm. The model constructed here permits any marginal distribution for the series and the most flexible autocorrelations possible, including those with negative dependence. Likelihood methods of inference are explored. The article first develops the modeling methods, which entail a discrete transformation of a Gaussian process having seasonal dynamics. Properties of this model class are then established and particle filtering likelihood methods of parameter estimation are developed. A simulation study demonstrating the efficacy of the methods is presented and an application to the number of rainy days in successive weeks in Seattle, Washington is given.more » « less
- 
            Abstract We derive a generalization of the Kalman filter that allows for non‐Gaussian background and observation errors. The Gaussian assumption is replaced by considering that the errors come from a mixed distribution of Gaussian, lognormal, and reverse lognormal random variables. We detail the derivation for reverse lognormal errors and extend the results to mixed distributions, where the number of Gaussian, lognormal, and reverse lognormal state variables can change dynamically every analysis time. We test the dynamical mixed Kalman filter robustly on two different systems based on the Lorenz 1963 model, and demonstrate that non‐Gaussian techniques generally improve the analysis skill if the observations are sparse and uncertain, compared with the Gaussian Kalman filter.more » « less
- 
            Abstract Particle filters avoid parametric estimates for Bayesian posterior densities, which alleviates Gaussian assumptions in nonlinear regimes. These methods, however, are more sensitive to sampling errors than Gaussian-based techniques such as ensemble Kalman filters. A recent study by the authors introduced an iterative strategy for particle filters that match posterior moments—where iterations improve the filter’s ability to draw samples from non-Gaussian posterior densities. The iterations follow from a factorization of particle weights, providing a natural framework for combining particle filters with alternative filters to mitigate the impact of sampling errors. The current study introduces a novel approach to forming an adaptive hybrid data assimilation methodology, exploiting the theoretical strengths of nonparametric and parametric filters. At each data assimilation cycle, the iterative particle filter performs a sequence of updates while the prior sample distribution is non-Gaussian, then an ensemble Kalman filter provides the final adjustment when Gaussian distributions for marginal quantities are detected. The method employs the Shapiro–Wilk test to determine when to make the transition between filter algorithms, which has outstanding power for detecting departures from normality. Experiments using low-dimensional models demonstrate that the approach has a significant value, especially for nonhomogeneous observation networks and unknown model process errors. Moreover, hybrid factors are extended to consider marginals of more than one collocated variables using a test for multivariate normality. Findings from this study motivate the use of the proposed method for geophysical problems characterized by diverse observation networks and various dynamic instabilities, such as numerical weather prediction models. Significance Statement Data assimilation statistically processes observation errors and model forecast errors to provide optimal initial conditions for the forecast, playing a critical role in numerical weather forecasting. The ensemble Kalman filter, which has been widely adopted and developed in many operational centers, assumes Gaussianity of the prior distribution and solves a linear system of equations, leading to bias in strong nonlinear regimes. On the other hand, particle filters avoid many of those assumptions but are sensitive to sampling errors and are computationally expensive. We propose an adaptive hybrid strategy that combines their advantages and minimizes the disadvantages of the two methods. The hybrid particle filter–ensemble Kalman filter is achieved with the Shapiro–Wilk test to detect the Gaussianity of the ensemble members and determine the timing of the transition between these filter updates. Demonstrations in this study show that the proposed method is advantageous when observations are heterogeneous and when the model has an unknown bias. Furthermore, by extending the statistical hypothesis test to the test for multivariate normality, we consider marginals of more than one collocated variable. These results encourage further testing for real geophysical problems characterized by various dynamic instabilities, such as real numerical weather prediction models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
