Abstract The young and well-studied planetary nebula (PN) NGC 7027 harbors significant molecular gas that is irradiated by luminous, pointlike UV (central star) and diffuse (shocked nebular) X-ray emission. This nebula represents an excellent subject to investigate the molecular chemistry and physical conditions within photon- and X-ray-dominated regions (PDRs and XDRs). As yet, the exact formation routes of CO+and HCO+in PN environments remain uncertain. Here we present ∼2″ resolution maps of NGC 7027 in the irradiation tracers CO+and HCO+obtained with the IRAM NOEMA interferometer, along with SMA CO and HST 2.12μm H2data for context. The CO+map constitutes the first interferometric map of this molecular ion in any PN. Comparison of CO+and HCO+maps reveals strikingly different emission morphologies, as well as a systematic spatial displacement between the two molecules; the regions of brightest HCO+, found along the central waist of the nebula, are radially offset by ∼1″ (∼900 au) outside the corresponding CO+emission peaks. The CO+emission furthermore precisely traces the inner boundaries of the nebula’s PDR (as delineated by near-IR H2emission), suggesting that central star UV emission drives CO+formation. The displacement of HCO+radially outward with respect to CO+is indicative that dust-penetrating soft X-rays are responsible for enhancing the HCO+abundance in the surrounding molecular envelope, forming an XDR. These interferometric CO+and HCO+observations of NGC 7027 thus clearly establish the spatial distinction between the PDR and XDR formed (respectively) by intense UV and X-ray irradiation of molecular gas. 
                        more » 
                        « less   
                    This content will become publicly available on May 1, 2026
                            
                            Extreme bandgap polarization doped AlGaN layers on bulk AlN for pn-diodes with an 8.5 MV cm −1 breakdown field and forward current density exceeding 20 kA cm −2
                        
                    
    
            Abstract In this paper we present a study of distribution polarization doped AlxGa1−xN layers and their use in quasi-vertical configuration pn-diodes which exhibited a high breakdown field of ∼8.5 MV cm−1and a large forward current density (∼23 kA cm−2). We also establish their potential use in UVC light emitters by studying the optical emission from a quantum well inserted at the distribution polarization doped pn-junction interface. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2246582
- PAR ID:
- 10609472
- Publisher / Repository:
- Japanese Journal of Applied Physics
- Date Published:
- Journal Name:
- Japanese Journal of Applied Physics
- Volume:
- 64
- Issue:
- 5
- ISSN:
- 0021-4922
- Page Range / eLocation ID:
- 055507
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (J+ 1 ←J) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J= 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J= 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R*, and an abundance, relative to H2, off∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R*. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP.more » « less
- 
            Abstract High hole densities are desired in p‐channel field effect transistors to improve the speed and on‐currents. Building on the recently discovered undoped, polarization‐induced GaN/AlN 2D hole gas (2DHG), this work demonstrates the tuning of the piezoelectric polarization difference across the heterointerface by introducing indium in the GaN channel. Using careful design and epitaxial growths, these pseudomorphic (In)GaN/AlN heterostructures result in some of the highest carrier densities of >1014cm−2in a III‐nitride heterostructure—just an order below the intrinsic crystal limit of ≈1015cm−2. These ultra‐high density InGaN/AlN 2DHGs show room temperature mobilities of 0.5–4 cm2V−1s−1and do not freeze out at low temperatures. A characteristic alloy fluctuation energy of 1.0 eV for hole scattering in InGaN alloy is proposed based on the experiments.more » « less
- 
            Abstract The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−xSrxHfO3system. The resulting (240)‐oriented PbHfO3(Pba2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP4mmphase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−xSrxHfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (EB) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (Ur) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofEB = 5.12 ± 0.5 MV cm−1,Ur = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides.more » « less
- 
            Abstract NMR hyperpolarization techniques enhance nuclear spin polarization by several orders of magnitude resulting in corresponding sensitivity gains. This enormous sensitivity gain enables new applications ranging from studies of small molecules by using high‐resolution NMR spectroscopy to real‐time metabolic imagingin vivo. Several hyperpolarization techniques exist for hyperpolarization of a large repertoire of nuclear spins, although the13C and15N sites of biocompatible agents are the key targets due to their widespread use in biochemical pathways. Moreover, their longT1allows hyperpolarized states to be retained for up to tens of minutes. Signal amplification by reversible exchange (SABRE) is a low‐cost and ultrafast hyperpolarization technique that has been shown to be versatile for the hyperpolarization of15N nuclei. Although large sensitivity gains are enabled by hyperpolarization,15N natural abundance is only ∼0.4 %, so isotopic labeling of the molecules to be hyperpolarized is required in order to take full advantage of the hyperpolarized state. Herein, we describe selected advances in the preparation of15N‐labeled compounds with the primary emphasis on using these compounds for SABRE polarization in microtesla magnetic fields through spontaneous polarization transfer from parahydrogen. Also, these principles can certainly be applied for hyperpolarization of these emerging contrast agents using dynamic nuclear polarization and other techniques.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
