Abstract The National Aeronautics and Space Administration’s Deep Space Quantum Link mission concept enables a unique set of science experiments by establishing robust quantum optical links across extremely long baselines. Potential mission configurations include establishing a quantum link between the Lunar Gateway moon-orbiting space station and nodes on or near the Earth. This publication summarizes the principal experimental goals of the Deep Space Quantum Link. These goals, identified through a multi-year design study conducted by the authors, include long-range teleportation, tests of gravitational coupling to quantum states, and advanced tests of quantum nonlocality.
more »
« less
This content will become publicly available on December 1, 2026
Towards satellite tests combining general relativity and quantum mechanics through quantum optical interferometry: progress on the deep space quantum link
The Deep Space Quantum Link (DSQL) is a space-mission concept that aims to explore the interplay between general relativity and quantum mechanics using quantum optical interferometry. This mission concept was formally presented to the United States National Academy of Science Decadal Survey as a research campaign for Fundamental Physics in 2022. Since then, advances have been made in the space-based quantum optical technologies required to conduct a DSQL-type mission. In addition, other research efforts have defined alternative measurement concepts to explore the same scientific questions motivating the DSQL mission. This paper serves as an update to the community on the status of the DSQL mission concept and related research and technology development efforts.
more »
« less
- Award ID(s):
- 1945578
- PAR ID:
- 10609610
- Publisher / Repository:
- SpringerOpen
- Date Published:
- Journal Name:
- EPJ Quantum Technology
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2662-4400
- Subject(s) / Keyword(s):
- Quantum Optics Quantum Networking Fundamental Physics Quantum Interferometry
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deacon, Keith S.; Meyers, Ronald E. (Ed.)In this article, we review the proposed experiments for the Deep Space Quantum Link (DSQL) mission concept aiming to probe gravitational effects on quantum optical systems. Quantum theory and general relativity are the two most successful frameworks we have to describe the universe. These theories have been validated through experimental confirmations in their domains of application— the macroscopic domain for relativity, and the microscopic domain for quantum theory. To date, laboratory experiments conducted in a regime where both theories manifest measurable effects on photons are limited. Satellite platforms enable the transmission of quantum states of light between different inertial frames and over distances impossible to emulate in the laboratory. The DSQL concept proposes simultaneous tests of quantum mechanics and general relativity enabled by quantum optical links to one or more spacecrafts.more » « less
-
Abstract The objective of the proposed macroscopic quantum resonators (MAQRO) mission is to harness space for achieving long free-fall times, extreme vacuum, nano-gravity, and cryogenic temperatures to test the foundations of physics in macroscopic quantum experiments at the interface with gravity. Developing the necessary technologies, achieving the required sensitivities and providing the necessary isolation of macroscopic quantum systems from their environment will lay the path for developing novel quantum sensors. Earlier studies showed that the proposal is feasible but that several critical challenges remain, and key technologies need to be developed. Recent scientific and technological developments since the original proposal of MAQRO promise the potential for achieving additional science objectives. The proposed research campaign aims to advance the state of the art and to perform the first macroscopic quantum experiments in space. Experiments on the ground, in micro-gravity, and in space will drive the proposed research campaign during the current decade to enable the implementation of MAQRO within the subsequent decade.more » « less
-
The discovery of functional dye materials with superior optical properties is crucial for advancing technologies in biomedical imaging, organic photovoltaics, and quantum information systems. Recent advancements highlight the need to accelerate this discovery process by integrating computational strategies with experimental methods. In this regard, we have employed a computational approach to explore the latent space of dye materials, utilizing swarm optimization techniques to efficiently navigate complex chemical spaces and identify optimal values of molecular properties using machine learning methods based on target properties, such as high extinction coefficients ($$\varepsilon$$). The latent space based evaluation outperformed all available features of a domain. This approach enhances inverse material design by systematically correlating molecular parameters with desired optical characteristics by implementing VAEs. In this process, by defining target properties as inputs, the model effectively determines the key molecular features necessary for engineering high-performance dye compounds.more » « less
-
Abstract Recent advances in optical atomic clocks and optical time transfer have enabled new possibilities in precision metrology for both tests of fundamental physics and timing applications. Here we describe a space mission concept that would place a state-of-the-art optical atomic clock in an eccentric orbit around Earth. A high stability laser link would connect the relative time, range, and velocity of the orbiting spacecraft to earthbound stations. The primary goal for this mission would be to test the gravitational redshift, a classical test of general relativity, with a sensitivity 30 000 times beyond current limits. Additional science objectives include other tests of relativity, enhanced searches for dark matter and drifts in fundamental constants, and establishing a high accuracy international time/geodesic reference.more » « less
An official website of the United States government
