Traditional plant breeding methods alone are insufficient to guarantee food security for a growing global population under a changing climate, necessitating more advanced approaches to develop productive and resilient crop varieties. The development of genome editing tools, particularly CRISPR/CAS, are significantly speeding up crop improvement by enabling targeted breeding in most crop species. However, for many crop species, the need for tissue culture remains a major bottle neck, slowing the progress of crop improvement. In this review, we are presenting and discussing approaches for delivering genome editing tools into a wide variety of crop plants, including perennials, and ideally without integration of transgenes. We suggest that efficient non-tissue culture delivery systems for high-performance genome editing are needed to fully reach the genome engineering potential in crop plants.
more »
« less
Using targeted genome methylation for crop improvement
Abstract Genome editing allows scientists to specifically change the DNA sequence of an organism. This powerful technology now fuels basic biology discovery and tangible crop improvement efforts. There is a less well understood layer of information encoded in genomes, known collectively as ‘epigenetics’, that impacts gene expression, without changing the DNA sequence. Epigenetic processes allow organisms to rapidly respond to environmental fluctuation. Like genome editing, recent advances have demonstrated that it is possible to edit the epigenome of a plant and cause heritable phenotypic changes. In this review, we aim to specifically consider the unique advantages that targeted epigenome editing might provide over existing biotechnology tools. This review is aimed at a broad audience. We begin with a high-level overview of the tools currently available for crop improvement. Next, we present a more detailed overview of the key discoveries that have been made in recent years, primarily using the model system Arabidopsis, new efforts to extend targeted methylation to crop plants, the current status of the technology, and the challenges that remain to realize the full potential of targeted epigenome editing. We end with a forward-looking commentary on how epi-alleles might interface with breeding programs across a variety of crops.
more »
« less
- Award ID(s):
- 2331437
- PAR ID:
- 10609679
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Experimental Botany
- Volume:
- 76
- Issue:
- 9
- ISSN:
- 0022-0957
- Format(s):
- Medium: X Size: p. 2394-2404
- Size(s):
- p. 2394-2404
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Genome editing technologies like CRISPR/Cas have greatly accelerated the pace of both fundamental research and translational applications in agriculture. However, many plant biologists are functionally limited to creating small, targeted DNA changes or large, random DNA insertions. The ability to efficiently generate large, yet precise, DNA changes will massively accelerate crop breeding cycles, enabling researchers to more efficiently engineer crops amidst a rapidly changing agricultural landscape. This review provides an overview of existing technologies that allow plant biologists to integrate large DNA sequences within a plant host and some associated technical bottlenecks. Additionally, this review explores a selection of emerging techniques in other host systems to inspire tool development in plants.more » « less
-
Abstract The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genome editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduce the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focus on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights into the limitations of available computational tools that would help researchers of this field for further optimization. Lastly, we suggest a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing.more » « less
-
The current technologies to place new DNA into specific locations in plant genomes are low frequency and error-prone, and this inefficiency hampers genome-editing approaches to develop improved crops. Often considered to be genome ‘parasites’, transposable elements (TEs) evolved to insert their DNA seamlessly into genomes. Eukaryotic TEs select their site of insertion based on preferences for chromatin contexts, which differ for each TE type. Here we developed a genome engineering tool that controls the TE insertion site and cargo delivered, taking advantage of the natural ability of the TE to precisely excise and insert into the genome. Inspired by CRISPR-associated transposases that target transposition in a programmable manner in bacteria, we fused the rice Pong transposase protein to the Cas9 or Cas12a programmable nucleases. We demonstrated sequence-specific targeted insertion (guided by the CRISPR gRNA) of enhancer elements, an open reading frame and a gene expression cassette into the genome of the model plant Arabidopsis. We then translated this system into soybean—a major global crop in need of targeted insertion technology. We have engineered a TE ‘parasite’ into a usable and accessible toolkit that enables the sequence-specific targeting of custom DNA into plant genomes.more » « less
-
null (Ed.)Abstract Crop genomics has seen dramatic advances in recent years due to improvements in sequencing technology, assembly methods, and computational resources. These advances have led to the development of new tools to facilitate crop improvement. The study of structural variation within species and the characterization of the pan-genome has revealed extensive genome content variation among individuals within a species that is paradigm shifting to crop genomics and improvement. Here, we review advances in crop genomics and how utilization of these tools is shifting in light of pan-genomes that are becoming available for many crop species.more » « less
An official website of the United States government
