skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 30, 2026

Title: A SPectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): Spectroscopically Complete Census of Obscured Cosmic Star Formation Rate Density at z  = 4–6
Abstract We present a stringent measurement of the dust-obscured star formation rate density (SFRD) atz= 4–6 from the ASPIRE JWST Cycle-1 medium and ALMA Cycle-9 large program. We obtained JWST/NIRCam grism spectroscopy and ALMA 1.2 mm continuum map along 25 independent quasar sightlines, covering a total survey area of  ∼35 arcmin2where we search for dusty star-forming galaxies (DSFGs) atz= 0–7. We identify eight DSFGs in seven fields atz= 4–6 through the detection of Hαor [O iii]λ5008 lines, including fainter lines such as Hβ, [O iii]λ4960, [N ii]λ6585, and [S ii]λλ6718,6733 for six sources. With this spectroscopically complete DSFG sample atz= 4–6 and negligible impact from cosmic variance (shot noise), we measure the infrared luminosity function (IRLF) down toLIR ∼ 2 × 1011L. We find flattening of IRLF atz= 4–6 towards the faint end (power-law slope α = 0.5 9 0.45 + 0.39 ). We determine the dust-obscured cosmic SFRD at this epoch to be log [ ρ SFR , IR / ( M yr 1 Mpc 3 ) ] = 1.5 2 0.13 + 0.14 . This is significantly higher than previous determinations using ALMA data in the Hubble Ultra Deep Field, which is void of DSFGs atz= 4–6 because of strong cosmic variance (shot noise). We conclude that the majority (66% ± 7%) of cosmic star formation atz ∼ 5 is still obscured by dust. We also discuss the uncertainty of SFRD propagated from far-IR spectral energy distribution and IRLF at the bright end, which will need to be resolved with future ALMA and JWST observations.  more » « less
Award ID(s):
2308258 2513040
PAR ID:
10609795
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
980
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2at 2 mm. Twelve of 13 detections above 5σare attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of z 2 mm = 3.6 0.3 + 0.4 primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources atz> 3 and 38% ± 12% of sources atz> 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z< 3) are far more numerous than those atz> 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300Myr−1and a relative rarity of ∼10−5Mpc−3contribute ∼30% to the integrated star formation rate density at 3 <z< 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies atz> 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, with β = 2.2 0.4 + 0.5 . The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies. 
    more » « less
  2. Abstract We present thez≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz≈ 5.7–6.2, with −28 ≲M1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez≈ 6 QLF over −28 ≲M1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z) ∝ 10k(z−6);k= −0.7), we use a maximum likelihood method to model our data. We find a break magnitude of M * = 26.38 0.60 + 0.79 mag , a faint-end slope of α = 1.70 0.19 + 0.29 , and a steep bright-end slope of β = 3.84 1.21 + 0.63 . Based on our new QLF model, we determine the quasar comoving spatial density atz≈ 6 to be n ( M 1450 < 26 ) = 1.16 0.12 + 0.13 cGpc 3 . In comparison with the literature, we find the quasar density to evolve with a constant value ofk≈ −0.7, fromz≈ 7 toz≈ 4. Additionally, we derive an ionizing emissivity of ϵ 912 ( z = 6 ) = 7.23 1.02 + 1.65 × 10 22 erg s 1 Hz 1 cMpc 3 , based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz≈ 6, we calculate an Hiphotoionizing rate of ΓH I(z= 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization. 
    more » « less
  3. Abstract Dust-obscured galaxies (DOGs) containing central supermassive black holes (SMBHs) that are rapidly accreting (i.e., having high Eddington ratios,λEdd) may represent a key phase closest to the peak of both the black hole and galaxy growth in the coevolution framework for SMBHs and galaxies. In this work, we present a 68 ks XMM-Newton observation of the high-λEddDOG J1324+4501 atz∼ 0.8, which was initially observed by Chandra. We analyze the XMM-Newton spectra jointly with archival Chandra spectra. In performing a detailed X-ray spectral analysis, we find that the source is intrinsically X-ray luminous with log ( L X /erg s 1 ) = 44.71 0.12 + 0.08 and heavily obscured with log ( N H / cm 2 ) = 23.43 0.13 + 0.09 . We further utilize UV-to-IR archival photometry to measure and fit the source’s spectral energy distribution to estimate its host-galaxy properties. We present a supplementary comparison sample of 21 X-ray luminous DOGs from the XMM-SERVS survey with sufficient (>200) 0.5–10 keV counts to perform a similarly detailed X-ray spectral analysis. Of the X-ray luminous DOGs in our sample, we find that J1324+4501 is the most remarkable, possessing one of the highest X-ray luminosities, column densities, and star formation rates. We demonstrate that J1324+4501 is in an extreme evolutionary stage where SMBH accretion and galaxy growth are at their peaks. 
    more » « less
  4. Abstract We present Atacama Large Millimeter/submillimeter Array observations of the [CI] 492 and 806 GHz fine-structure lines in 25 dusty star-forming galaxies (DSFGs) atz= 4.3 in the core of the SPT2349–56 protocluster. The protocluster galaxies exhibit a median L [ C I ] ( 2 1 ) / L [ C I ] ( 1 0 ) ratio of 0.94, with an interquartile range of 0.81–1.24. These ratios are markedly different to those observed in DSFGs in the field (across a comparable redshift and 850μm flux density range), where the median is 0.55, with an interquartile range of 0.50–0.76, and we show that this difference is driven by an excess of [Ci](2–1) in the protocluster galaxies for a given 850μm flux density. Assuming local thermal equilibrium, we estimate gas excitation temperatures of T ex = 59 . 1 6.8 + 8.1 K for our protocluster sample and T ex = 33 . 9 2.2 + 2.4 K for the field sample. Our main interpretation of this result is that the protocluster galaxies have had their cold gas driven to their cores via close-by interactions within the dense environment, leading to an overall increase in the average gas density and excitation temperature, as well as an elevated [Ci](2–1) luminosity-to-far-infrared-luminosity ratio. 
    more » « less
  5. Abstract We present measurements of the neutral atomic hydrogen (Hi) mass function (HiMF) and cosmic Hidensity (ΩH I) at 0 ≤z≤ 0.088 from the Looking at the Distant Universe with MeerKAT Array (LADUMA) survey. Using LADUMA Data Release 1 (DR1), we analyze the HiMF via a new “recovery matrix” method that we benchmark against a more traditional modified maximum likelihood (MML) method. Our analysis, which implements a forward modeling approach, corrects for survey incompleteness and uses extensive synthetic source injections to ensure robust estimates of the HiMF parameters and their associated uncertainties. This new method tracks the recovery of sources in mass bins different from those in which they were injected and incorporates a Poisson likelihood in the forward modeling process, allowing it to correctly handle uncertainties in bins with few or no detections. The application of our analysis to a high-purity subsample of the LADUMA DR1 spectral line catalog in turn mitigates any possible biases that could result from the inconsistent treatment of synthetic and real sources. For the surveyed redshift range, the recovered Schechter function normalization, low-mass slope, and “knee” mass are ϕ * = 3.5 6 1.92 + 0.97 × 1 0 3 Mpc−3dex−1, α = 1.1 8 0.19 + 0.08 , and log ( M * / M ) = 10.0 1 0.12 + 0.31 , respectively, which together imply a comoving cosmic Hidensity of Ω H I = 3.0 9 0.47 + 0.65 × 1 0 4 . Our results show consistency between recovery matrix and MML methods and with previous low-redshift studies, giving confidence that the cosmic volume probed by LADUMA, even at low redshifts, is not an outlier in terms of its Hicontent. 
    more » « less