skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating permanganate oxidizable carbon (POXC)’s potential for differentiating carbon pools in wetland soils
Soil carbon (C) storage is a globally important ecosystem service with the potential to contribute to climate change mitigation. Wetlands are heavily researched hot spots for soil C storage. Despite the growing number of wetland soil C inventories, most studies focus only on total C quantification; there is limited application of methods that evaluate differences in C stability and vulnerability to mineralization within the C pool. Permanganate oxidizable C (POXC) is a well-established soil health indicator in agriculture shown to be sensitive to changing conditions or management regimes and may prove equally informative in wetland studies. This research quantified POXC in six diverse wetland soils that differed greatly in organic matter content and spanned both freshwater and saltwater habitats, then evaluated the relationship between POXC and basic soil C properties, microbial indicators, and physical and chemical fractionation metrics. Results showed POXC averaged ∼ 37 times greater in wetlands than upland agricultural soils, but was less robust in differentiating between individual wetlands than total C or organic matter content. Rather, the ratio of POXC to soil organic C may be a more informative metric for evaluating the proportion of slightly processed C in wetland soils. Significant correlations were found between POXC and almost all other soil properties measured, suggesting POXC could be a rapid, reliable, and economical proxy for other analyses. Overall, POXC shows potential for providing novel information about wetland soil C stability, but requires additional research to improve interpretability. Applying POXC analysis in time series data collection and before-after-control impact experiments may be particularly informative for wetland management.  more » « less
Award ID(s):
2149866
PAR ID:
10609848
Author(s) / Creator(s):
; ; ; ; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Ecological Indicators
Volume:
167
Issue:
C
ISSN:
1470-160X
Page Range / eLocation ID:
112624
Subject(s) / Keyword(s):
Potassium permanganate Soil health indicator Wetland Soil carbon Mineral associate organic matter
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wetland soils are a key global sink for organic carbon (C) and a focal point for C management and accounting efforts. The ongoing push for wetland restoration presents an opportunity for climate mitigation, but C storage expectations are poorly defined due to a lack of reference information and an incomplete understanding of what drives natural variability among wetlands. We sought to address these shortcomings by (1) quantifying the range of variability in wetland soil organic C (SOC) stocks on a depressional landscape (Delmarva Peninsula, USA) and (2) investigating the role of hydrology and relative topography in explaining variability among wetlands. We found a high degree of variability within individual wetlands and among wetlands with similar vegetation and hydrogeomorphic characteristics. This suggests that uncertainty should be presented explicitly when inferring ecosystem processes from wetland types or land cover classes. Differences in hydrologic regimes, particularly the rate of water level recession, explained some of the variability among wetlands, but relationships between SOC stocks and some hydrologic metrics were eclipsed by factors associated with separate study sites. Relative topography accounted for a similar portion of SOC stock variability as hydrology, indicating that it could be an effective substitute in large-scale analyses. As wetlands worldwide are restored and focus increases on quantifying C benefits, the importance of appropriately defining and assessing reference systems is paramount. Our results highlight the current uncertainty in this process, but suggest that incorporating landscape heterogeneity and drivers of natural variability into reference information may improve how wetland restoration is implemented and evaluated. 
    more » « less
  2. Tidal wetlands, widely considered the most extensive reservoir of soil organic carbon (SOC), can benefit from remote sensing studies enabling spatiotemporal estimation and mapping of SOC stock. We found that a majority of the remote-sensing-based SOC mapping efforts have been focused on upland ecosystems, not on tidal wetlands. We present a comprehensive review detailing the types of remote sensing models and methods used, standard input variables, results, and limitations for the handful of studies on tidal wetland SOC. Based on that synthesis, we pose several unexplored research questions and methods that are critical for moving tidal wetland SOC science forward. Among these, the applicability of machine learning and deep learning models for predicting surface SOC and the modeling requirements for SOC in subsurface soils (soils without a remote sensing signal, i.e., a soil depth greater than 5 cm) are the most important. We did not find any remote sensing study aimed at modeling subsurface SOC in tidal wetlands. Since tidal wetlands store a significant amount of SOC at greater depths, we hypothesized that surface SOC could be an important covariable along with other biophysical and climate variables for predicting subsurface SOC. Preliminary results using field data from tidal wetlands in the southeastern United States and machine learning model output from mangrove ecosystems in India revealed a strong nonlinear but significant relationship (r2 = 0.68 and 0.20, respectively, p < 2.2 × 10−16 for both) between surface and subsurface SOC at different depths. We investigated the applicability of the Soil Survey Geographic Database (SSURGO) for tidal wetlands by comparing the data with SOC data from the Smithsonian’s Coastal Blue Carbon Network collected during the same decade and found that the SSURGO data consistently over-reported SOC stock in tidal wetlands. We concluded that a novel machine learning framework that utilizes remote sensing data and derived products, the standard covariables reported in the limited literature, and more importantly, other new and potentially informative covariables specific to tidal wetlands such as tidal inundation frequency and height, vegetation species, and soil algal biomass could improve remote-sensing-based tidal wetland SOC studies. 
    more » « less
  3. Abstract Hydrologic controls on carbon processing and export are a critical feature of wetland ecosystems. Hydrologic response to climate variability has important implications for carbon‐climate feedbacks, aquatic metabolism, and water quality. Little is known about how hydrologic processes along the terrestrial‐aquatic interface in low‐relief, depressional wetland catchments influence carbon dynamics, particularly regarding soil‐derived dissolved organic matter (DOM) transport and transformation. To understand the role of different soil horizons as potential sources of DOM to wetland systems, we measured water‐soluble organic matter (WSOM) concentration and composition in soils collected from upland to wetland transects at four Delmarva Bay wetlands in the eastern United States. Spectral metrics indicated that WSOM in shallow organic horizons had increased aromaticity, higher molecular weight, and plant‐like signatures. In contrast, WSOM from deeper, mineral horizons had lower aromaticity, lower molecular weights, and microbial‐like signatures. Organic soil horizons had the highest concentrations of WSOM, and WSOM decreased with increasing soil depth. WSOM concentrations also decreased from the upland to the wetland, suggesting that continuous soil saturation reduces WSOM concentrations. Despite wetland soils having lower WSOM, these horizons are thicker and continuously hydrologically connected to wetland surface and groundwater, leading to wetland soils representing the largest potential source of soil‐derived DOM to the Delmarva Bay wetland system. Knowledge of which soil horizons are most biogeochemically significant for DOM transport in wetland ecosystems will become increasingly important as climate change is expected to alter hydrologic regimes of wetland soils and their resulting carbon contributions from the landscape. 
    more » « less
  4. Abstract Coastal marshes are globally important, carbon dense ecosystems simultaneously maintained and threatened by sea‐level rise. Warming temperatures may increase wetland plant productivity and organic matter accumulation, but temperature‐modulated feedbacks between productivity and decomposition make it difficult to assess how wetlands and their thick, organic‐rich soils will respond to climate warming. Here, we actively increased aboveground plant‐surface and belowground soil temperatures in two marsh plant communities, and found that a moderate amount of warming (1.7°C above ambient temperatures) consistently maximized root growth, marsh elevation gain, and belowground carbon accumulation. Marsh elevation loss observed at higher temperatures was associated with increased carbon mineralization and increased microtopographic heterogeneity, a potential early warning signal of marsh drowning. Maximized elevation and belowground carbon accumulation for moderate warming scenarios uniquely suggest linkages between metabolic theory of individuals and landscape‐scale ecosystem resilience and function, but our work indicates nonpermanent benefits as global temperatures continue to rise. 
    more » « less
  5. Abstract Wetland and permafrost soils contain some of Earth's largest reservoirs of organic carbon, and these stores are threatened by rapid warming across the Arctic. Nearly half of northern wetlands are affected by permafrost. As these ecosystems warm, the cycling of dissolved organic matter (DOM) and the opportunities for microbial degradation are changing. This is particularly evident as the relationship between wetland and permafrost DOM dynamics evolves, especially with the introduction of permafrost‐derived DOM into wetland environments. Thus, understanding the interplay of DOM composition and microbial communities from wetlands and permafrost is critical to predicting the impact of released carbon on global carbon cycling. As little is understood about the interactions between wetland active layer and permafrost‐derived sources as they intermingle, we conducted experimental bioincubations of mixtures of DOM and microbial communities from two fen wetland depths (shallow: 0–15 cm, and deep: 15–30 cm) and two ages of permafrost soil (Holocene and Pleistocene). We found that the source of microbial inoculum was not a significant driver of dissolved organic carbon (DOC) degradation across treatments; rather, DOM source and specifically, DOM molecular composition, controlled the rate of DOC loss over 100 days of bioincubations. DOC loss across all treatments was negatively correlated with modified aromaticity index, O/C, and the relative abundance of condensed aromatic and polyphenolic formula, and positively correlated with H/C and the relative abundance of aliphatic and peptide‐like formula. Pleistocene permafrost‐derived DOC exhibited ∼70% loss during the bioincubation driven by its initial molecular‐level composition, highlighting its high bioavailability irrespective of microbial source. 
    more » « less