skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Settling and Rotation of Frozen Hydrometeors in Turbulent Air
Abstract Numerical model predictions of precipitation rates rely heavily on representations of how fast hydrometeors fall, assuming settling is determined only by the opposing force balance of gravity and drag. Here, we use a novel suite of ground‐based winter measurements to show large departures of the mean snowflake settling speed from the terminal fall speed of a particle falling broadside. Where is lower than the air root‐mean‐square turbulent velocity fluctuation , settling is sub‐terminal by up to a factor of five, and if it is higher, then settling is super‐terminal by up to a factor of three. Mean winds and aerodynamic lift appear to play an unexpectedly important role, by tilting snowflake orientations edge‐on while slowing their mean rate of descent. New parameterizations are provided for relating winds and small‐scale turbulence to hydrometeor orientations, drift angles, and precipitation rate reductions and enhancements.  more » « less
Award ID(s):
2210179
PAR ID:
10610020
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We use a novel experimental setup to obtain the vertical velocity and acceleration statistics of snowflakes settling in atmospheric surface-layer turbulence, for Taylor microscale Reynolds numbers (Reλ) between 400 and 67 000, Stokes numbers (St) between 0.12 and 3.50, and a broad range of snowflake habits. Despite the complexity of snowflake structures and the non-uniform nature of the turbulence, we find that mean snowflake acceleration distributions can be uniquely determined from the value of St. Ensemble-averaged snowflake root mean square (rms) accelerations scale nearly linearly with St. Normalized by the rms value, the acceleration distribution is nearly exponential, with a scaling factor for the (exponent) of −3/2 that is independent of Reλ and St; kurtosis scales with Reλ, albeit weakly compared to fluid tracers in turbulence; gravitational drift with sweeping is observed for St < 1. Surprisingly, the same exponential distribution describes a pseudo-acceleration calculated from fluctuations of snowflake terminal fall speed in still air. This equivalence suggests an underlying connection between how turbulence determines the trajectories of particles and the microphysics determining the evolution of their shapes and sizes. 
    more » « less
  2. null (Ed.)
    Abstract. Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple midlatitude and polar locations both with and without wind shielding. Here, we present an analysis of Arctic field observations – with and without a Belfort double Alter shield – and compare the results to computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC. MASC-measured fall speeds compare well with Ka-band Atmospheric Radiation Measurement (ARM) Zenith Radar (KAZR) mean Doppler velocities only when winds are light (≤5ms-1) and the MASC is shielded. MASC-measured fall speeds that do not match KAZR-measured velocities tend to fall below a threshold value that increases approximately linearly with wind speed but is generally <0.5ms-1. For those events with wind speeds ≤1.5ms-1, hydrometeors fall with an orientation angle mode of 12∘ from the horizontal plane, and large, low-density aggregates are as much as 5 times more likely to be observed. Simulations in the absence of a wind shield show a separation of flow at the upstream side of the instrument, with an upward velocity component just above the aperture, which decreases the mean particle fall speed by 55 % (74 %) for a wind speed of 5 m s−1 (10 m s−1). We conclude that accurate MASC observations of the microphysical, orientation, and fall speed characteristics of snow particles require shielding by a double wind fence and restriction of analysis to events where winds are light (≤5ms-1). Hydrometeors do not generally fall in still air, so adjustments to these properties' distributions within natural turbulence remain to be determined. 
    more » « less
  3. Abstract This study was to assess the raindrop fall speed measurement capabilities of OTT Parsivel2disdrometer through comparisons with measurements of a collocated High-speed Optical Disdrometer (HOD). Raindrop fall speed is often assumed to be terminal in relevant hydrological and meteorological applications, and generally predicted using terminal speed–raindrop size relationships obtained from laboratory observations. Nevertheless, recent field studies have revealed that other factors (e.g., wind, turbulence, raindrop oscillations, and collisions) significantly influence raindrop fall speed, necessitating accurate fall speed measurements for many applications instead of reliance on laboratory-based terminal speed predictions. Field observations in this study covered rainfall events with a variety of environmental conditions, including light, moderate, and heavy rainfall events. This study also involved rigorous laboratory experiments to faithfully identify the internal filtering and calculation algorithm of OTT Parsivel2. Our assessments revealed that, for the smaller diameter bins, Parsivel2filters out many of the observed raindrops that fall faster than predicted terminal speeds, bringing down the mean fall speed for those size bins without observational evidence. Furthermore, Parsivel2fall speed measurements exhibited notable artificial bell-shaped deviations from the predicted terminal speeds toward subterminal fall starting at around 1 mm diameter raindrops with peak deviations around 1.625 mm diameter bin. Such bell-shaped fall speed deviation patterns were not present in collocated HOD measurements. Assessment results along with the faithfully identified Parsivel2algorithm are presented with discussions on implications on reported raindrop size distributions (DSD) and rainfall kinetic energy. 
    more » « less
  4. null (Ed.)
    Abstract Snow aggregate shapes and orientations have long been known to exhibit substantial variability. Despite this observed variability, most weather and climate prediction models use fixed power-law functions that deterministically map particle size to mass and fall speed. As such, integrated quantities like precipitation and self-aggregation rates currently ignore nonlinear effects resulting from variation in shape and orientation for aggregates of the same size. This study therefore develops an analytic framework that couples an empirically based bivariate distribution of ellipsoid shapes to classical hydrodynamic theory so as to capture an appropriate dispersion of masses, projected areas, and fall speeds for an assumed size distribution. For a fixed aggregate size, shape variations produce approximately ±0.13 m s −1 standard deviation of fall speed which increases the mass flux fall speed dispersion by more than 100% over traditional microphysics models. This increased fall speed dispersion results predominantly from shape-induced mass dispersion whereas orientation and drag dispersion play a lesser role. Shape variations can increase mass- and reflectivity-weighted fall speeds by up to 60% of traditional models whereas self-aggregation rates can increase by a factor of 100 for very small slope parameters. This implies that aggregate shape variations effectively forestall the theorized onset of fall speed distribution narrowing and subsequent quenching of the aggregation process. As a result, it is likely that secondary ice formation is necessary to prevent an ever decreasing slope parameter. The mathematical theory presented in this study is used to develop simple correction factors for snow forecast and climate models. 
    more » « less
  5. Abstract Detailed ground‐based observations of snow are scarce in remote regions, such as the Arctic. Here, Multi‐Angle Snowflake Camera measurements of over 55,000 solid hydrometeors—obtained during a two‐year period from August 2016 to August 2018 at Oliktok Point, Alaska—are analyzed and compared to similar measurements from an earlier experiment at Alta, Utah. In general, distributions of hydrometeor fall speed, fall orientation, aspect ratio, flatness, and complexity (i.e., riming degree) were observed to be very similar between the two locations, except that Arctic hydrometeors tended to be smaller. In total, the slope parameter defining a negative exponential of the size distribution was approximately 50% steeper in the Arctic as at Alta. Sixty‐six percent of particles were observed to be rimed or moderately rimed with some suggestion that riming is favored by weak boundary layer stability. On average, the fall speed of rimed particles was not notably different from aggregates. However, graupel density and fall speed increase as cloud temperatures approach the melting point. 
    more » « less