skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 6, 2025

Title: Trends in Nitrate, Ammonium, and Total Nitrogen Deposition in the Lake Erie Basin: A 20-Year Analysis
This study examines changes in nitrogen deposition in the Lake Erie basin since 2000, focusing on five monitoring sites of the National Atmospheric Deposition Program (NADP): Chautauqua (NY10) and Kane Experimental Forest (PA29) in the east, Wooster (OH71) and Roush Lake (IN20) in the west, and Kellogg Biological Station (MI26) in the northwest. Quantitative analysis revealed consistent decrease in nitrate (NO3-) levels across all monitoring sites. The average reduction in nitrate deposition was 33% over the study period, with western sites showing slightly higher reductions compared to the eastern sites. Specifically, the western sites of Wooster (OH71) and Roush (IN20) exhibited decreases of 37% and 35%, respectively, while eastern sites of Chautauqua (NY10) and Kane (PA29) showed reductions of 30% and 31%. Ammonium (NH4+) levels, in contrast, showed cyclic fluctuations with peaks occurring approximately every 7-10 years over the study period. At Kane (PA29), ammonium levels fluctuated by ±15% around the mean value. Wooster (OH71) showed similar fluctuations of ±13%, while Kellogg (MI26) exhibited the highest variability at ±18%. Total nitrogen deposition, combining both nitrate and ammonium, followed a decreasing trend similar to nitrate. The average reduction in total nitrogen deposition was approximately 30% across the monitoring sites. Chautauqua (NY10) exhibited a 28% reduction, Kane (PA29) 29%, Wooster (OH71) 33%, Roush (IN20) 32%, and Kellogg (MI26) 32%. Spatial analysis evidenced regional differences in nitrogen deposition trends. The western sites (OH71, IN20) showed higher reductions in nitrate deposition (36% on average) compared to the eastern sites (NY10, PA29) (30.5% on average). This east-west disparity may be due to differences in local emission sources, prevailing wind patterns, or variations in the implementation of nitrogen reduction measures. The northwestern site, MI26, showed nitrate reductions (32%) intermediate between western and eastern sites, suggesting a potential gradient in deposition changes across the Lake Erie basin. Observed reductions in nitrogen deposition, particularly nitrate, suggest the effectiveness of regulatory measures aimed at reducing nitrogen oxide emissions. However, persistent cyclic fluctuations in ammonium deposition highlight the need for continued monitoring and management of agricultural nutrient runoff. These findings have significant ecological implications for Lake Erie, potentially helping to mitigate eutrophication and reduce frequency and intensity of harmful algal blooms. The study underscores the importance of NADP's comprehensive, long-term monitoring. These valuable insights could inform adaptive management strategies for the Lake Erie basin, balancing economic activities with ecosystem health in the face of ongoing climate change and land-use pressures.  more » « less
Award ID(s):
2051074
PAR ID:
10610104
Author(s) / Creator(s):
;
Publisher / Repository:
National Atmospheric Deposition Program
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lake Erie, USA–Canada, plays an important ecological and socioeconomic role but has suffered from chronic eutrophication. In particular, western Lake Erie (WLE) is the site of harmful algal blooms (HABs) which are suspected of being driven by excessive nutrient (phosphorus (P) and nitrogen (N)) inputs. During 2022 and 2023, in situ nutrient dilution and addition bioassays were conducted at a WLE bloom‐impacted location to investigate whether a nutrient reduction regime would be effective in limiting phytoplankton growth during the June diatom‐dominated spring blooms and August cyanobacteria‐dominated summer blooms. The primary objectives of this experiment were to (1) Determine if a proposed 40% P‐alone reduction would effectively reduce phytoplankton growth and mitigate blooms and (2) assess whether reductions in both P and N are more effective in controlling phytoplankton biomass than exclusive reductions in either N or P. Samples were analyzed for nutrient concentrations and growth rate responses for specific algal groups, utilizing diagnostic (for major algal groups) photopigments. Results indicated that although both 20% and 40% dilutions led to lower phytoplankton biomass and growth rates, 40% reductions were more effective. Our results support the USA–Canada Great Lakes Water Quality Agreement recommendation of a 40% P reduction, but also indicate that a parallel reduction of N input by 40% would be most effective in controlling bloom magnitudes. Overall, our findings underscore the recommendation that a year‐round dual N and P 40% reduction is needed for long‐term control of eutrophication and algal blooms, including cyanobacteria and diatoms, in Lake Erie. 
    more » « less
  2. Abstract The large areal extent of hypoxia in the northern Gulf of Mexico has been partially attributed to substantial nitrogen (N) loading from the Mississippi River basin, which is driven by multiple natural and human factors. The available water quality monitoring data and most of the current models are insufficient to fully quantify N load magnitude and the underlying controls. Here we use a process‐based Dynamic Land Ecosystem Model to examine how multiple factors (synthetic N fertilizer, atmospheric N deposition, land use changes, climate variability, and increasing atmospheric CO2) have affected the loading and delivery of total nitrogen (TN) consisting of ammonium and nitrate (dissolved inorganic N) and total organic nitrogen from the Mississippi River basin during 1901–2014. The model results indicate that TN export during 2000–2014 was twofold larger than that in the first decade of twentieth century: Dissolved inorganic N export increased by 140% dominated by nitrate; total organic nitrogen export increased by 53%. The substantial enrichment of TN export since the 1960s was strongly associated with increased anthropogenic N inputs (synthetic N fertilizer and atmospheric N deposition). The greatest export of TN was in the spring. Although the implementation of N reduction has been carried out over the past three decades, total N loads to the northern Gulf of Mexico have not decreased significantly. Due to the legacy effect from historical N accumulation in soils and riverbeds, a larger reduction in synthetic N fertilizer inputs as well as improved N management practices are needed to alleviate ocean hypoxia in the northern Gulf of Mexico. 
    more » « less
  3. Humbert, Jean-François (Ed.)
    Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates ( Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp ( Exiguobacterium sp. JMULE1) to 5.7 Mbp ( Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis . Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai ( Taihu ) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis . 
    more » « less
  4. In Lake Erie, toxin-forming harmful algal blooms (HABs) occur following high concentrations of hydrogen peroxide (H 2 O 2 ). Correlation between H 2 O 2 concentrations and HABs revealed knowledge gaps on the controls of H 2 O 2 production in Lake Erie. One way H 2 O 2 is produced is upon absorption of sunlight by the chromophoric fraction of dissolved organic matter (CDOM). Rates of this photochemical production of H 2 O 2 may increase in proportion to the apparent quantum yield of H 2 O 2 ( Φ H 2 O 2 ,λ ) from CDOM. However, the Φ H 2 O 2 ,λ for H 2 O 2 production from CDOM remains too poorly constrained to predict the magnitude and range of photochemically produced H 2 O 2 , particularly in freshwaters like Lake Erie. To address this knowledge gap, the Φ H 2 O 2 ,λ was measured approximately biweekly from June–September 2019 in the western basin of Lake Erie along with supporting analyses ( e.g. , CDOM concentration and composition). The average Φ H 2 O 2 ,λ in Lake Erie was within previously reported ranges. However, the Φ H 2 O 2 ,λ varied 5-fold in space and time. The highest Φ H 2 O 2 ,λ was observed in the Maumee River, a tributary of Lake Erie. In nearshore waters of Lake Erie, the Φ H 2 O 2 ,λ decreased about five-fold from June through September. Integration of the controls of photochemical production of H 2 O 2 in Lake Erie show that the variability in rates of photochemical H 2 O 2 production was predominantly due to the Φ H 2 O 2 ,λ . In offshore waters, CDOM concentration also strongly influenced photochemical H 2 O 2 production. Together, the results confirm prior work suggesting that photochemical production of H 2 O 2 contributes but likely cannot account for all the H 2 O 2 associated with HABs in Lake Erie. 
    more » « less
  5. Abstract Although understanding nutrient limitation of primary productivity in lakes is among the oldest research priorities in limnology, there have been few broad‐scale studies of the characteristics of phosphorus (P)‐, nitrogen (N)‐, and co‐limited lakes and their environmental context. By analyzing 3342 US lakes with concurrent P, N, and chlorophylla(Chla) samples, we showed that US lakes are predominantly co‐limited (43%) or P‐limited (41%). Majorities of lakes were P‐limited in the Northeast, Upper Midwest, and Southeast, and co‐limitation was most prevalent in the interior and western United States. N‐limitation (16%) was more prevalent than P‐limitation in the Great Basin and Central Plains. Nutrient limitation was related to lake, watershed, and regional variables, including Chlaconcentration, watershed soil, and wet nitrate deposition. N and P concentrations interactively affected nutrient–chlorophyll relationships, which differed by nutrient limitation. Our study demonstrates the value of considering P, N, and environmental context in nutrient limitation and nutrient–chlorophyll relationships. 
    more » « less