skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 11, 2026

Title: Cataract induction in an arthropod reveals how lens crystallins contribute to the formation of biological glass
Lenses are vital components of well-functioning eyes and are crafted through the precise arrangement of proteins to achieve transparency and refractive ability. In addition to optical clarity for minimal scatter and absorption, proper placement of the lens within the eye is equally important for the formation of sharp, focused images on the retina. Maintaining these states is challenging due to dynamic and substantial post-embryonic eye and lens growth. Here, we gain insights into required processes through exploring the optical and visual consequences of silencing a key lens constituent inThermonectus marmoratussunburst diving beetle larvae. Using RNAi, we knocked down Lens3, a widely expressed cuticular lens protein during a period of substantial growth of their camera-type principal eyes. We show thatlens3RNAi results in the formation of opacities reminiscent of vertebrate lens ‘cataracts’, causing the projection of blurry and degraded images. Consequences of this are exacerbated in low-light conditions, evidenced by impaired hunting behaviour in this visually guided predator. Notably, lens focal lengths remained unchanged, suggesting that power and overall structure are preserved despite the absence of this major component. Further, we did not detect significant shifts in thein-vivorefractive states of cataract-afflicted larvae. This in stark contrast with findings in vertebrates, in which form-deprivation or the attenuation of image contrast, results in the dysregulation of eye growth, causing refractive errors such as myopia. Our results provide insights into arthropod lens construction and align with previous findings which point towards visual input being inconsequential for maintaining correctly focused eyes in this group. Our findings highlight the utility ofT. marmoratusas a tractable model system to probe the aetiology of lens cataracts and refractive errors.  more » « less
Award ID(s):
1856241
PAR ID:
10610143
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Yousefi, Reza
Publisher / Repository:
PLOS ONE
Date Published:
Journal Name:
PLOS One
Volume:
20
Issue:
6
ISSN:
1932-6203
Page Range / eLocation ID:
e0325229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For eyes to maintain optimal focus, precise coordination is required between lens optics and retina position, a mechanism that in vertebrates is governed by genetics, visual feedback, and possibly intraocular pressure (IOP). While the underlying processes have been intensely studied in vertebrates, they remain elusive in arthropods, though visual feedback may be unimportant. How do arthropod eyes remain functional while undergoing substantial growth? Here, we test whether a common physiological process, osmoregulation, could regulate growth in the sophisticated camera-type eyes of the predatory larvae of Thermonectus marmoratus diving beetles. Upon molting, their eye-tubes elongate in less than an hour, and osmotic pressure measurements reveal that this growth is preceded by a transient increase in hemolymph osmotic pressure. Histological evaluation of support cells that determine the lens-to-retina spacing, reveals swelling rather than the addition of new cells. In addition, treating larvae with hyperosmotic media post-molt leads to far-sighted (hyperopic) eyes as expected from a failure of proper lengthening of the eye tube, and results in impaired hunting success. This study suggests that osmoregulation could be of ubiquitous importance for properly focused eyes. 
    more » « less
  2. Astonishing functional diversity exists among arthropod eyes, yet eye development relies on deeply conserved genes. This phenomenon is best understood for early events, whereas fewer investigations have focused on the influence of later transcriptional regulators on diverse eye organizations and the contribution of critical support cells, such as Semper cells (SCs). As SCs in Drosophila melanogaster secrete the lens and function as glia, they are critical components of ommatidia. Here, we perform RNAi-based knockdowns of the transcription factor cut (CUX in vertebrates), a marker of SCs, the function of which has remained untested in these cell types. To probe for the conserved roles of cut , we investigate two optically different compound eyes: the apposition optics of D. melanogaster and the superposition optics of the diving beetle Thermonectus marmoratus . In both cases, we find that multiple aspects of ocular formation are disrupted, including lens facet organization and optics as well as photoreceptor morphogenesis. Together, our findings support the possibility of a generalized role for SCs in arthropod ommatidial form and function and introduces Cut as a central player in mediating this role. 
    more » « less
  3. The shape and relative size of an ocular lens affect the focal length of the eye, with consequences for visual acuity and sensitivity. Lenses are typically spherical in aquatic animals with camera-type eyes and axially flattened in terrestrial species to facilitate vision in optical media with different refractive indices. Frogs and toads (Amphibia: Anura) are ecologically diverse, with many species shifting from aquatic to terrestrial ecologies during metamorphosis. We quantified lens shape and relative size using 179 micro X-ray computed tomography scans of 126 biphasic anuran species and tested for correlations with life stage, environmental transitions, adult habits and adult activity patterns. Across broad phylogenetic diversity, tadpole lenses are more spherical than those of adults. Biphasic species with aquatic larvae and terrestrial adults typically undergo ontogenetic changes in lens shape, whereas species that remain aquatic as adults tend to retain more spherical lenses after metamorphosis. Further, adult lens shape is influenced by adult habit; notably, fossorial adults tend to retain spherical lenses following metamorphosis. Finally, lens size relative to eye size is smaller in aquatic and semiaquatic species than other adult ecologies. Our study demonstrates how ecology shapes visual systems, and the power of non-invasive imaging of museum specimens for studying sensory evolution. 
    more » « less
  4. Abstract Animals typically have either compound eyes, or camera-type eyes, both of which have evolved repeatedly in the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. At the molecular level deeply conserved genes that relate to the differentiation of photoreceptor cells have fueled a discussion on whether or not a shared evolutionary origin might be considered for this cell type. In contrast, only a handful of studies, primarily on the compound eyes ofDrosophila melanogaster, have demonstrated molecular similarities in SupCs.D. melanogasterSupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to question if there could be conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetleThermonectus marmoratus. To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several common features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate similarities, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas.T. marmoratusSupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results suggest thatT. marmoratusSupCs are a form of glia, and like photoreceptors, may be deeply conserved. 
    more » « less
  5. βγ‐Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post‐translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post‐translational modifications that can cause age‐related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid‐liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high‐resolution structure include dye‐binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET. 
    more » « less