skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Functionally graded spinodal nanoarchitected ceramics with unprecedented recoverability
A fundamental challenge for lightweight architected materials is their propensity for localized failure due to layered buckling, plastic shear-banding or fracture. Recent research efforts have used disorder to interrupt localization and enhance deformation, but most design strategies simply distribute the accumulation of damage, they do not prevent it from developing and propagating. This work explores how gradient architecture can be designed to hinder crack propagation and promote recoverability in nanostructured ceramic metamaterials. We experimentally and numerically investigated five different shell-based spinodal ceramic nanoarchitectures with 10-80 nm thick alumina films. These were fabricated using atomic layer deposition on sacrificial polymeric scaffolds written using two-photon lithography. All thin-walled (<40 nm) architectures underwent shell buckling-dominated deformation and showed nearly full recovery after compression to 45% strain, an expected result for this class of nanoarchitected materials. Thick-walled (>40 nm) isotropic and anisotropic architectures experienced considerable local damage during compression and predictably showed permanent failure even at low strains. Unexpectedly, thick-walled conch-shell inspired gradient architectures showed localized damage but experienced a full recovery after compression to 45% strain. This degree of recoverability has never been observed in this high density of a nanostructured ceramic, particularly one with visible local cracking during compression. This result stems from the length scale of the structural heterogeneity - the gradient layers were sufficiently small so as to inhibit the local damage development needed for crack propagation, thereby preventing catastrophic failure. Our findings have significant implications for how length scales and heterogeneity can be used to design failure-resistant materials from brittle constituents.  more » « less
Award ID(s):
2339197
PAR ID:
10610146
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
International Journal of Mechanical Sciences
ISSN:
0020-7403
Page Range / eLocation ID:
110453
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Failure of materials and structures is inherently linked to localized mechanisms, from shear banding in metals, to crack propagation in ceramics and collapse of space‐trusses after buckling of individual struts. In lightweight structures, localized deformation causes catastrophic failure, limiting their application to small strain regimes. To ensure robustness under real‐world nonlinear loading scenarios, overdesigned linear‐elastic constructions are adopted. Here, the concept of delocalized deformation as a pathway to failure‐resistant structures and materials is introduced. Space‐tileable tensegrity metamaterials achieving delocalized deformation via the discontinuity of their compression members are presented. Unprecedented failure resistance is shown, with up to 25‐fold enhancement in deformability and orders of magnitude increased energy absorption capability without failure over same‐strength state‐of‐the‐art lattice architectures. This study provides important groundwork for design of superior engineering systems, from reusable impact protection systems to adaptive load‐bearing structures. 
    more » « less
  2. Recovery plays distinct roles in nanostructured and coarse-grained metallic materials. While static and dynamic recovery usually soften work-hardened, coarse-grained materials, static recovery has been shown to strengthen nanostructured metals. This study extends this understanding by demonstrating that dynamic recovery can also strengthen nanostructured metals under deformation. Tensile, creep, and plane strain compression tests on nanostructured aluminum reveal a trend of increasing strain-hardening with decreasing strain rate and increasing temperature. Molecular dynamics simulations further indicate that sudden strain rate reductions lead to an initial drop in flow stress, followed by strain hardening. These findings suggest that dynamic recovery could serve as an effective strengthening mechanism for nanostructured metals, offering improvements in uniform elongation. 
    more » « less
  3. Ultralight and resilient porous nanostructures have been fabricated in various material forms, including carbon, polymers, and metals. However, the development of ultralight and high-temperature resilient structures still remains extremely challenging. Ceramics exhibit good mechanical and chemical stability at high temperatures, but their brittleness and sensitivity to flaws significantly complicate the fabrication of resilient porous ceramic nanostructures. We report the manufacturing of large-scale, lightweight, high-temperature resilient, three-dimensional sponges based on a variety of oxide ceramic (for example, TiO2, ZrO2, yttria-stabilized ZrO2, andBaTiO3) nanofibers through an efficient solution blow-spinning process. The ceramic sponges consist of numerous tangled ceramic nanofibers, with densities varying from 8 to 40 mg/cm3. In situ uniaxial compression in a scanning electron microscope showed that the TiO2 nanofiber sponge exhibits high energy absorption (for example, dissipation of up to 29.6mJ/cm3 in energy density at 50% strain) and recovers rapidly after compression in excess of 20% strain at both room temperature and 400°C. The sponge exhibits excellent resilience with residual strains of only ~1%at 800°C after 10 cycles of 10%compression strain and maintains good recoverability after compression at ~1300°C. We show that ceramic nanofiber sponges can serve multiple functions, such as elasticity-dependent electrical resistance, photocatalytic activity, and thermal insulation. 
    more » « less
  4. null (Ed.)
    This research presents an experimental program executed to understand the strength and stiffness properties of hollow built-up glass compression members that are intended for use in the modular construction of all glass, compression-dominant, shell-type structures. The proposed compression-dominant geometric form has been developed using the methods of form finding and three-dimensional graphical statics. This research takes the first steps towards a new construction methodology for glass structures where individual hollow glass units (HGU) are assembled using an interlocking system to form large, compression-dominant, shell-type structures, thereby exploiting the high compression strength of glass. In this study, an individual HGU has an elongated hexagonal prism shape and consists of two deck plates, two long side plates, and four short side plates, as is shown in Figure 1. Connections between glass plates are made using a two-sided transparent structural adhesive tape. The test matrix includes four HGUs, two each fabricated with 1 mm and 2 mm thick adhesive tape. All samples are dimensioned 64 cm on the long axis of symmetry, 51 cm on the short axis of symmetry, and are 10 cm in width. Glass plates are all 10 mm thick annealed float glass with geometric fabrication done using 5-axis abrasive water jet cutting. HGU assembly is accomplished using 3D printed truing clips and results in a rigid three-dimensional glass frame. Testing was done with the HGU oriented such that load was introduced on the short side edges of the two deck plates, resulting in an asymmetric load-support condition. A soft interface material was used between the HGU and steel plates of the hydraulic actuator and support for the purpose of avoiding premature cracking from local stress concentrations on the glass edges at the load and support locations. Force was applied in displacement control at 0.25 mm/minute with a full array of displacement and strain sensors. Test results for load vs. center deck plate transverse deflection are shown in Figure 2. All samples failed explosively by flexural buckling with no premature cracking on the load and support edges of the deck plates. Strain and deformation data clearly show the presence of second-order behavior resulting from bending deformation perpendicular to the plane of the deck plates. In general, linear axial behavior transitions to nonlinear second-order behavior, with increasing rates in deflection and strain growth, ultimately ending in glass fracture on the tension surfaces of the buckled deck plates. The failure resulted in near-complete disintegration of the deck plates, but with no observable cracking in any side plates and a secure connection on all adhesive tape. Results of the experimental program clearly demonstrate the feasibility of using HGUs for modular construction of compression dominant all-glass shell-type structures. This method of construction can significantly reduce the self-weight of the structure, and it will inspire the use of sustainable materials in the construction of efficient structures. 
    more » « less
  5. Directed energy deposition (DED)-based additive manufacturing (AM) was employed to fabricate three distinct bimetallic compositions to understand the role interface for the deformation behavior of bimetallic structures under compressive loading. Commercially pure titanium (CP Ti) with a hexagonal closed packed (HCP) structure, nickel (Ni) with a face-centered cubic (FCC), and tantalum (Ta) with a body-centered cubic (BCC) structure were selected to understand the deformation behavior within the pure metals and damage accumulation at the bimetallic interface. By incorporating the combination of these materials, such as Ni-Ti, Ni-Ta, and Ta-Ti, we aimed to manufacture layered-base polycrystalline composite structures with FCC-HCP, FCC-BCC, and BCC-HCP crystal unit cells, respectively. In Ni-Ti and Ni-Ta bimetallic structures, it was determined that deformation is controlled by the Ni region, where the highest deflection occurs when Ni bulges out and makes lateral stress at the interface, resulting in crack initiation, propagation, and failure of the structure. Structural edges were found to experience the highest deformation, prompting grain inclination towards the <111> crystal orientation, resulting in a favorable orientation for dislocation slip and a higher Taylor factor. However, strong interfacial bonding and similar Young's modulus between Ta and Ti altered the deformation mechanisms to twinning formation in the Ti region and observed buckling of the entire structure without significant failure at the interface. 
    more » « less