Abstract Worker reproduction in social insects is often regulated by the queen, but can be regulated by the brood and nestmates, who may use different mechanisms to induce the same outcomes in subordinates. Analysis of brain gene expression patterns in bumble bee workers (Bombus impatiens) in response to the presence of the queen, the brood, both or neither, identified 18 differentially expressed genes, 17 of them are regulated by the queen and none are regulated by the brood. Overall, brain gene expression differences in workers were driven by the queen’s presence, despite recent studies showing that brood reduces worker egg laying and provides context to the queen pheromones. The queen affected important regulators of reproduction and brood care across insects, such asneuroparsinandvitellogenin, and a comparison with similar datasets in the honey bee and the clonal raider ant revealed thatneuroparsinis differentially expressed in all species. These data emphasize the prominent role of the queen in regulating worker physiology and behavior. Genes that serve as key regulators of workers’ reproduction are likely to play an important role in the evolution of sociality.
more »
« less
Bumble bee queen pheromones are context-dependent
Abstract Queen pheromones have long been studied as a major factor regulating reproductive division of labor in social insects. Hitherto, only a handful of queen pheromones were identified and their effects on workers have mostly been studied in isolation from the social context in which they operate. Our study examined the importance of behavioral and social context for the perception of queen semiochemicals by bumble bee workers. Our results indicate that a mature queen’s cuticular semiochemicals are capable of inhibiting worker reproduction only when accompanied by the queen’s visual presence and the offspring she produces, thus, when presented in realistic context. Queen’s chemistry, queen’s visual presence and presence of offspring all act to regulate worker reproduction, but none of these elements produces an inhibitory effect on its own. Our findings highlight the necessity to reconsider what constitutes a queen pheromone and suggest a new approach to the study of chemical ecology in social insects.
more »
« less
- Award ID(s):
- 1942127
- PAR ID:
- 10610207
- Publisher / Repository:
- Nature protfolio
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The mechanisms that maintain reproductive division of labor in social insects are still incompletely understood. Most studies focus on the relationship between adults, overlooking another important stakeholder– the juveniles. Recent studies show that not only the queen, but also the brood regulate worker reproduction. However, how the two coordinate to maintain reproductive monopoly remained unexplored. Here, we disentangled the roles of the brood and the queen in primitively eusocial bees (Bombus impatiens) by examining their separated and combined effects on worker behavioral, physiological and brain gene expression. We found that young larvae produce a releaser effect on workers, decreasing oviposition and aggression, while the queen produces both releaser and primer effects, modifying worker behaviors and reproductive physiology. The expression of reproduction- and aggression-related genes was altered in the presence of both queen and brood but was stronger or the same in the presence of the queen. We identified two types of interactions between the queen and the brood in regulating worker reproduction: (1) synergistic interactions regulating worker physiology, where the combined effect of the queen and the brood on worker physiology was greater than their separate effects; (2) additive interactions where the combined effect of the queen and the brood on worker behavior was similar to the sum of their separate effects. Our results suggest that the queen and the brood interact synergistically and additively to regulate worker behavior and reproduction, and this interaction exists at multiple regulatory levels.more » « less
-
Abstract BackgroundEvolution has shaped diverse reproductive investment strategies, with some organisms integrating environmental cues into their reproductive decisions. In animal societies, social cues can further influence reproductive decisions in ways that might support the survival and success of the social group. Bumble bees are a lineage of eusocial insects wherein queens initiate nests independently. Bumble bee queens enter their eusocial phase only after successfully rearing their first offspring and thereafter exhibit an increased rate of egg-laying. We tested the idea that during bumble bee nest initiation, queen reproduction is socially context-dependent and under the control of social conditions in the nest. ResultsOur findings reveal that in the bumble beeBombus impatiens, queen egg-laying follows a dynamic, stereotypical pattern and is also heavily influenced by social group members. During the initial stages of nest initiation, accelerated egg-laying in queens is associated with the presence of workers or older larvae and pupae. Moreover, workers are required for queens to maintain increased levels of egg laying across the nest initiation stage. We also confirmed a previously-described pattern where queens temporarily decelerate egg-laying early in nest-founding, only to increase it again when the first adult workers are soon to emerge. This “pause” in egg-laying was observed in allB. impatiensqueens as well as in additional species examined. ConclusionsOur results support the idea that eusocial systems can employ socially context-dependent control of queen egg-laying as a reproductive strategy. In some solitary-founding lineages, including bumble bees, queens may reach their full reproductive potential only after the emergence of the first adult workers, who then take over brood care. This stands in contrast to the hyper-reproductivity observed in some eusocial species. The presence of workers and older brood (who will soon eclose) not only alleviates queen brood care responsibilities but may also provide signals that cause queens to increase their reproductive output. These phenomena may allow queens to adapt their reproductive output to the conditions of the colony. Broadly, these findings highlight the dynamic interplay between social conditions and reproduction in bumble bees.more » « less
-
Herberstein, Marie (Ed.)Abstract Access to reproduction is determined by an individual’s dominance rank in many species and is achieved through aggression and/or dominance signaling. In eusocial insects, one or several dominant females (queens) monopolize reproduction but to what extent queens rely on aggression and signaling remains obscure. Aggression is costly and its efficiency depends on the group size, whereas signaling may reduce the risks and costs of aggression. Both strategies are used to regulate reproduction in social taxa, with aggression being more common in small social groups, compared to signaling in larger societies. Here, we examine the use of aggression and chemical signaling in a social species (Bombus impatiens) where the dominant queen interacts with increasing numbers of workers as she ages. We found that the queen’s strategy to monopolize reproduction changes with life stage, shifting from overt aggression to chemical signaling as the queen gets older. Particularly, old queens exhibited a higher ratio of short to long cuticular hydrocarbons compared to young queens, an endogenous shift that was attributed to age, as all egg-laying queens were fecund and kept with the same number of workers. Our findings contribute to the understanding of reproductive dominance in the context of an individual’s life history.more » « less
-
Abstract An ant colony is the epitome of social organization where up to millions of individuals cooperate to survive, compete, and reproduce as a single superorganism, Female members of ant colonies typically are categorized into a reproductive queen caste and a non-reproductive worker caste. The queen(s) conveys her fertility condition and in cases, genotype status, via a suite of queen pheromones whose various functions are crucial to the superorganismal nature of ant colonies. Knowledge of these functional properties is fundamental for identifying constituent chemicals and understanding corresponding modes of actions. In this review, I summarize functional properties of ant queen pheromones learned from seven decades of behavioral experiments, and contextualize this knowledge within the broader understanding of queen pheromones in other major groups of social insects. The effects include promotion of colony integrity and coherence, maintenance of reproductive dominance of the queen, and regulation of colony social structure. Additionally, general characteristics of queen pheromones are discussed and potential avenues for future research are highlighted.more » « less
An official website of the United States government

