skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 9, 2026

Title: FE-ToolKit: A Versatile Software Suite for Analysis of High-Dimensional Free Energy Surfaces and Alchemical Free Energy Networks
Award ID(s):
2209718
PAR ID:
10610216
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Journal of Chemical Information and Modeling
Volume:
65
Issue:
11
ISSN:
1549-9596
Page Range / eLocation ID:
5273 to 5279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. The excess free energy of mixing Δ G ex governs the phase behavior of mixtures and controls material properties. It is challenging, however, to measure Δ G ex in simulations. Previously, we developed a method that combines molecular dynamics (MD) simulations with thermodynamic integration along the path of transformation of chains to predict the Flory Huggins interaction parameter χ for polymer mixtures and block copolymers. However, this method is best applied when the constituent molecules of the blends are structurally related. To overcome this limitation, we have developed a new method to predict Δ G ex for mixtures. We perform simulations to induce phase separation within a mixture by gradually weakening the interaction between different species. To compute Δ G ex we measure the thermodynamic work required to modify the interactions and the interfacial energy between the separated phases. We validate our method by applying it first to equimolar mixtures of labeled and unlabeled Lennard-Jones (LJ) beads, and labeled and unlabeled benzene, which results in good agreement with ideal solution theory. Then we compute the excess free energy of mixing for equimolar mixtures of benzene and pyridine, using both united-atom (UA) and all-atom (AA) potentials. Our results using UA potentials predict a value for Δ G ex about four times the experimental value, whereas using AA potentials gives results consistent with experiment, highlighting the need for good potentials to faithfully represent mixture behavior. 
    more » « less