skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: Plasma-Assisted Surface Nitridation of Proton Intercalatable WO 3 for Efficient Electrocatalytic Ammonia Synthesis
Electrocatalytic nitrogen reduction (eNRR) offers a green pathway for NH3 production from N2 and H2O under ambient conditions. Transition metal oxynitrides (TMOxNy) are among the most promising catalysts but face challenges in achieving high yield and faradaic efficiency (FE). This work develops a hybrid WOxNy/WO3 catalyst with a unique heterogeneous interfacial complexion (HIC) structure. This design enables in situ generation and delivery of highly active hydrogen atoms (H*) in acidic electrolytes, promoting nitrogen hydrogenation and formation of nitrogen vacancies (Nv) on the WOxNy surface. This significantly enhances the selectivity of eNRR for NH3 synthesis while suppressing hydrogen evolution reaction (HER). A simple two-step fabrication process—microwave hydrothermal growth followed by plasma-assisted surface nitridation—was developed to fabricate the designed catalyst electrode, achieving an NH3 yield of 3.2 × 10-10 mol·cm-2·s-1 with 40.1% FE, outperforming most TMN/TMOxNy electrocatalysts. Multiple control experiments confirm that the eNRR follows a HIC-enhanced Mars-van Krevelen (MvK) mechanism.  more » « less
Award ID(s):
2428523 2428524 2428525
PAR ID:
10610225
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemistry Society
Date Published:
Journal Name:
ACS Energy Letters
ISSN:
2380-8195
Page Range / eLocation ID:
3349 to 3358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The electrochemical reduction of nitrates (NO3) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3synthesis cost‐competitive with current technologies, high NH3partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe‐based materials is leveraged to synthesize a novel active particle‐active support system with Fe2O3nanoparticles supported on atomically dispersed Fe–N–C. The optimized 3×Fe2O3/Fe–N–C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3of 1.95 A cm−2at a Faradaic efficiency (FE) for NH3of 100% and an NH3yield rate over 9 mmol hr−1cm−2. Operando XANES and post‐mortem XPS reveal the importance of a pre‐reduction activation step, reducing the surface Fe2O3(Fe3+) to highly active Fe0sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3particles and Fe–Nxsites at highly cathodic potentials, maintaining a current of −1.3 A cm−2over 24 hours. This work exhibits an effective and durable active particle‐active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity. 
    more » « less
  2. Abstract The catalytic hydrothermal liquefaction of biomass under a hydrogen atmosphere is a promising technology to produce stable biocrude oil as a sustainable alternative to petroleum crude. A series of iron‐based non‐noble mix metal‐oxide‐on‐silica catalysts were evaluated to mimic the natural transformation that may have led to the conversion of terrestrial biomass to fossilized fuels. Switchgrass powder was liquefied to a stable bio‐oil with a 71.2% yield by using FeOx/SiO2catalyst in ethanol under a 5.5 MPa hydrogen atmosphere at 210 °C. The use of Fe‐MOx/SiO2(M = V, Mn, Co, Ni, Cu and Mo) type bimetallic oxide catalysts instead of FeOx/SiO2can produce improvements in liquefaction yields by using Mn, Co, Ni, and Cu as the second metal. The highest liquefaction yield of 78.8% was observed with the Fe‐CuOx/SiO2catalyst. Liquefaction oils were formed that were composed of complex mixtures of C6‐C12 alcohols, esters, aldehydes, and phenols. The lignin products:holocellulose products ratio changed in the range 0.35 to 0.15 and the composition of oils changed significantly with the use of mixed metal oxides in place of single metal FeOx/SiO2The most effective catalyst, Fe‐CuOx/SiO2could be reused in five cycles with a small loss in liquefaction yield from 78.8% to 70.0% after four reuse cycles and after regeneration of the catalyst at 500 °C for 3 h in air. 
    more » « less
  3. We report a new terpyridine-based FeN3O catalyst, Fe(tpytbupho)Cl2, which reduces O2 to H2O. Variable concentration and variable temperature spectrochemical studies with decamethylferrocene as a chemical reductant in acetonitrile solution enabled the elucidation of key reaction parameters for the catalytic reduction of O2 to H2O by Fe(tpytbupho)Cl2. These mechanistic studies suggest that a 2 + 2 mechanism is operative, where hydrogen peroxide is produced as a discrete intermediate, prior to further reduction to H2O. Consistent with this proposal, the spectrochemically measured first-order rate constant k (s−1) value for H2O2 reduction is larger than that for O2 reduction. Further, significant H2O2 production is observed under hydrodynamic conditions in rotating ring-disk electrode measurements, where the product can be swept away from the cathode surface before further reduction occurs. 
    more » « less
  4. Ethylene oxide (EO) is one of the most crucial materials in plastic industries. The traditional catalytic process requires high temperature and pressure to produce EO. A chlorine-assisted system has been reported to produce EO, but it required noble metal catalysts, which significantly increased the cost. In this work, a MOF-derived Co 3 O 4 /nitrogen-doped carbon composite (Co 3 O 4 /NC) prepared through a two-step calcination method exhibited remarkable chlorine evolution reaction (ClER) activity as compared with a commercial RuO 2 catalyst, which can be attributed to the higher specific surface area and lower resistance of its porous structure and nitrogen-doped carbon. Furthermore, the Co 3 O 4 /NC maintained a stable potential and a high faradaic efficiency throughout the 10-hour electrolysis test. 
    more » « less
  5. Abstract Ammonia (NH3) electrosynthesis gains significant attention as NH3is essentially important for fertilizer production and fuel utilization. However, electrochemical nitrogen reduction reaction (NRR) remains a great challenge because of low activity and poor selectivity. Herein, a new class of atomically dispersed Ni site electrocatalyst is reported, which exhibits the optimal NH3yield of 115 µg cm−2h−1at –0.8 V versus reversible hydrogen electrode (RHE) under neutral conditions. High faradic efficiency of 21 ± 1.9% is achieved at ‐0.2 V versus RHE under alkaline conditions, although the ammonia yield is lower. The Ni sites are stabilized with nitrogen, which is verified by advanced X‐ray absorption spectroscopy and electron microscopy. Density functional theory calculations provide insightful understanding on the possible structure of active sites, relevant reaction pathways, and confirm that the Ni‐N3sites are responsible for the experimentally observed activity and selectivity. Extensive controls strongly suggest that the atomically dispersed NiN3site‐rich catalyst provides more intrinsically active sites than those in N‐doped carbon, instead of possible environmental contamination. This work further indicates that single‐metal site catalysts with optimal nitrogen coordination is very promising for NRR and indeed improves the scaling relationship of transition metals. 
    more » « less