skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Community‐Driven Code Comparisons for Simulations of Fluid‐Induced Aseismic Slip
Abstract Numerical simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) have rapidly progressed to address fundamental problems in fault mechanics and provide self‐consistent, physics‐based frameworks to interpret and predict geophysical observations across spatial and temporal scales. To advance SEAS simulations with rigor and reproducibility, we pursue community efforts to verify numerical codes in an expanding suite of benchmarks. Here we present code comparison results from a new set of quasi‐dynamic benchmark problems BP6‐QD‐A/S/C that consider an aseismic slip transient induced by changes in pore fluid pressure consistent with fluid injection and diffusion in fault models with different treatments of fault friction. Ten modeling groups participated in problems BP6‐QD‐A and BP6‐QD‐S considering rate‐and‐state fault models using the aging (‐A) and slip (‐S) law formulations for frictional state evolution, respectively, allowing us to better understand how various computational factors across codes affect the simulated evolution of pore pressure and aseismic slip. Comparisons of problems using the aging versus slip law, and a constant friction coefficient (‐C), illustrate how aseismic slip models can differ in the timing and amount of slip achieved with different treatments of fault friction given the same perturbations in pore fluid pressure. We achieve excellent quantitative agreement across participating codes, with further agreement attained by ensuring sufficiently fine time‐stepping and consistent treatment of boundary conditions. Our benchmark efforts offer a community‐based example to reveal sensitivities of numerical modeling results, which is essential for advancing multi‐physics SEAS models to better understand and construct reliable predictive models of fault dynamics.  more » « less
Award ID(s):
2225216 2053372
PAR ID:
10610280
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
Journal of Geophysical Research: Solid Earth
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
130
Issue:
4
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamic modeling of sequences of earthquakes and aseismic slip (SEAS) provides a self‐consistent, physics‐based framework to connect, interpret, and predict diverse geophysical observations across spatial and temporal scales. Amid growing applications of SEAS models, numerical code verification is essential to ensure reliable simulation results but is often infeasible due to the lack of analytical solutions. Here, we develop two benchmarks for three‐dimensional (3D) SEAS problems to compare and verify numerical codes based on boundary‐element, finite‐element, and finite‐difference methods, in a community initiative. Our benchmarks consider a planar vertical strike‐slip fault obeying a rate‐ and state‐dependent friction law, in a 3D homogeneous, linear elastic whole‐space or half‐space, where spontaneous earthquakes and slow slip arise due to tectonic‐like loading. We use a suite of quasi‐dynamic simulations from 10 modeling groups to assess the agreement during all phases of multiple seismic cycles. We find excellent quantitative agreement among simulated outputs for sufficiently large model domains and small grid spacings. However, discrepancies in rupture fronts of the initial event are influenced by the free surface and various computational factors. The recurrence intervals and nucleation phase of later earthquakes are particularly sensitive to numerical resolution and domain‐size‐dependent loading. Despite such variability, key properties of individual earthquakes, including rupture style, duration, total slip, peak slip rate, and stress drop, are comparable among even marginally resolved simulations. Our benchmark efforts offer a community‐based example to improve numerical simulations and reveal sensitivities of model observables, which are important for advancing SEAS models to better understand earthquake system dynamics. 
    more » « less
  2. ABSTRACT Numerical modeling of earthquake dynamics and derived insight for seismic hazard relies on credible, reproducible model results. The sequences of earthquakes and aseismic slip (SEAS) initiative has set out to facilitate community code comparisons, and verify and advance the next generation of physics-based earthquake models that reproduce all phases of the seismic cycle. With the goal of advancing SEAS models to robustly incorporate physical and geometrical complexities, here we present code comparison results from two new benchmark problems: BP1-FD considers full elastodynamic effects, and BP3-QD considers dipping fault geometries. Seven and eight modeling groups participated in BP1-FD and BP3-QD, respectively, allowing us to explore these physical ingredients across multiple codes and better understand associated numerical considerations. With new comparison metrics, we find that numerical resolution and computational domain size are critical parameters to obtain matching results. Codes for BP1-FD implement different criteria for switching between quasi-static and dynamic solvers, which require tuning to obtain matching results. In BP3-QD, proper remote boundary conditions consistent with specified rigid body translation are required to obtain matching surface displacements. With these numerical and mathematical issues resolved, we obtain excellent quantitative agreements among codes in earthquake interevent times, event moments, and coseismic slip, with reasonable agreements made in peak slip rates and rupture arrival time. We find that including full inertial effects generates events with larger slip rates and rupture speeds compared to the quasi-dynamic counterpart. For BP3-QD, both dip angle and sense of motion (thrust versus normal faulting) alter ground motion on the hanging and foot walls, and influence event patterns, with some sequences exhibiting similar-size characteristic earthquakes, and others exhibiting different-size events. These findings underscore the importance of considering full elastodynamics and nonvertical dip angles in SEAS models, as both influence short- and long-term earthquake behavior and are relevant to seismic hazard. 
    more » « less
  3. Abstract It is widely recognized that fluid injection can trigger aseismic fault slip. However, the processes by which the fluid‐rock interactions facilitate or inhibit slip are poorly understood and some are oversimplified in most models of injection‐induced slip. In this study, we perform a 2D anti‐plane shear investigation of aseismic slip that occurs in response to fluid injection into a permeable fault governed by rate‐and‐state friction. We account for porosity and permeability changes that accompany slip, including dilatancy, and quantify how these processes affect pore pressure diffusion, which couples to aseismic slip. Fault response to injection has two phases. In the first phase, slip is negligible and pore pressure closely follows the standard linear diffusion model. Pressurization eventually triggers aseismic slip close to the injection site. In the second phase, aseismic slip front expands outward and dilatancy causes pore pressure to depart from the linear diffusion model. We quantify how prestress, injection rate, permeability and other fluid transport properties affect the slip front migration rate, finding rates ranging from 10 to 1,000 m/day for typical parameters. The migration rate is strongly influenced by the fault's closeness to failure and injection rate. The total slip on the fault, on the other hand, is primarily determined by the injected volume, with minimal sensitivity to injection rate. Additionally, we show that when dilatancy is neglected, slip front migration rate and total slip can be several times higher. Our modeling demonstrates that porosity and permeability evolution, especially dilatancy, fundamentally alters how faults respond to fluid injection. 
    more » « less
  4. Earthquake swarms attributed to subsurface fluid injection are usually assumed to occur on faults destabilized by increased pore-fluid pressures. However, fluid injection could also activate aseismic slip, which might outpace pore-fluid migration and transmit earthquake-triggering stress changes beyond the fluid-pressurized region. We tested this theoretical prediction against data derived from fluid-injection experiments that activated and measured slow, aseismic slip on preexisting, shallow faults. We found that the pore pressure and slip history imply a fault whose strength is the product of a slip-weakening friction coefficient and the local effective normal stress. Using a coupled shear-rupture model, we derived constraints on the hydromechanical parameters of the actively deforming fault. The inferred aseismic rupture front propagates faster and to larger distances than the diffusion of pressurized pore fluid. 
    more » « less
  5. Abstract Inversions of InSAR ground deformation in the Delaware Basin have revealed an aseismic slip on semi‐optimally oriented normal faults located close to disposal wells. The slip, occurring over 3–5 years, extends approximately 1 km down‐dip, over 10 km along strike, and reaches 25 cm. We develop and calibrate 2D and pseudo‐3D coupled pore pressure diffusion and rate‐state models with velocity‐strengthening friction tailored to this unique height‐bounded fault geometry. Pressure diffusion is limited to a high‐permeability fault damage zone, and the net influx of fluid is adjusted to match the observed slip. A 1–2 MPa pressure increase initiates slip, with ∼5 MPa additional pressure increase required to produce ∼20 cm slip. Most slip occurs at approximately constant friction. Fault zone permeability must exceed ∼10−13 m2to match the along‐strike extent of slip. Models of the type developed here can be used to operationally manage injection‐induced aseismic slip. 
    more » « less