skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proteomics Approaches to Ecoimmunology: New Insights into Wildlife Immunity and Disease
Synopsis Understanding wildlife immune responses is crucial for assessing disease risks, environmental stress effects, and conservation challenges. Traditional ecoimmunology approaches rely on targeted assays, which, while informative, often provide a fragmented and species-limited view of immune function. Proteomics offers a powerful alternative by enabling the high-throughput, system-wide quantification of immune-related proteins, providing a functional perspective on immunity that overcomes many limitations of conventional methods. However, proteomics remains underutilized in ecoimmunology despite its potential to enhance biomarker discovery, host–pathogen interaction studies, and environmental health assessments. This perspective highlights proteomics as a transformative tool for ecoimmunology, disease ecology, and conservation biology. We discuss its unique advantages over other -omics approaches, including its ability to capture realized immune function rather than inferred gene expression, its applicability to diverse wildlife taxa, and its potential for longitudinal immune monitoring of individuals using minimally invasive sampling. We also address key challenges, including limited genomic reference resources, sample constraints, reproducibility issues, and the need for standardized protocols. To overcome these barriers, we propose practical solutions, such as leveraging proteomes of closely related species for annotation and using their annotated genomes as search spaces for peptide mapping. Additionally, we highlight the importance of alternative quality control strategies and improved data-sharing practices to enhance the utility of proteomics in wildlife research. To fully integrate proteomics into ecoimmunology, we recommend expanding public reference databases for non-model species, refining field-adapted workflows, and fostering interdisciplinary collaboration between ecologists, immunologists, and bioinformaticians. By embracing these advancements, the field can leverage proteomics to bridge the gap between molecular mechanisms and ecological processes, ultimately improving our ability to monitor wildlife health, predict disease risks, and inform conservation strategies in the face of environmental change.  more » « less
Award ID(s):
2515340
PAR ID:
10610405
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative And Comparative Biology
ISSN:
1540-7063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging infectious diseases, biodiversity loss, and anthropogenic environmental change are interconnected crises with massive social and ecological costs. In this Review, we discuss how pathogens and parasites are responding to global change, and the implications for pandemic prevention and biodiversity conservation. Ecological and evolutionary principles help to explain why both pandemics and wildlife die-offs are becoming more common; why land-use change and biodiversity loss are often followed by an increase in zoonotic and vector-borne diseases; and why some species, such as bats, host so many emerging pathogens. To prevent the next pandemic, scientists should focus on monitoring and limiting the spread of a handful of high-risk viruses, especially at key interfaces such as farms and live-animal markets. But to address the much broader set of infectious disease risks associated with the Anthropocene, decision-makers will need to develop comprehensive strategies that include pathogen surveillance across species and ecosystems; conservation-based interventions to reduce human–animal contact and protect wildlife health; health system strengthening; and global improvements in epidemic preparedness and response. Scientists can contribute to these efforts by filling global gaps in disease data, and by expanding the evidence base for disease–driver relationships and ecological interventions. 
    more » « less
  2. Abstract The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre‐empt infectious disease risks, especially in the context of how large‐scale factors such as urbanization affect defence by changing environmental conditions.We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large‐scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small‐scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods.We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence.We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed‐effects models that account for spatial variability while also allowing researchers to account for both individual‐ and habitat‐level covariates.We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large‐scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large‐scale field studies with small‐scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta‐analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual‐ to habitat‐level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk. 
    more » « less
  3. Synopsis Wildlife health comparisons within and across populations and species are essential for population assessment and surveillance of emerging infectious diseases. Due to low costs and high informational yield, hematology is commonly used in the fields of ecoimmunology and disease ecology, yet consistency and proper reporting of methods within these fields are lacking. Previous investigations on various wildlife taxa have revealed noteworthy impacts of the vein used for blood collection on hematology measures. However, the impacts of venipuncture site on bats, a taxon of increasing interest in ecoimmunology and disease ecology, have not yet been tested. Here, we use a long-term study system in western Oklahoma to test the effect of venipuncture site on hematology parameters of the Mexican free-tailed bat (Tadarida brasiliensis) and cave myotis (Myotis velifer), two abundant and representative bat species from the families Molossidae and Vespertilionidae. Between September 2023 and October 2024, we collected paired peripheral blood from both the propatagial and intrafemoral veins in 25 individuals per species. We then quantified total red and white blood cells, reticulocyte counts, and leukocyte differentials and used generalized linear mixed models to compare parameters among venipuncture sites within and between bat species. Overall, venipuncture site had no effect on any hematology parameters; however, we revealed small differences in neutrophil and lymphocyte proportions between veins among the species. By contrast, we detected significant species-level differences in most cell measurements, which we propose could be explained by life-history strategy and phylogenetic differences. We encourage continued testing of additional venipuncture sites, and of the same venipuncture sites on different species, on hematology and other health metrics used in ecoimmunology and disease ecology. Lastly, we emphasize the importance of thorough method reporting in publications to enable transparent comparisons and accounting for even small sampling-based artifacts. All future efforts are especially important for bats to improve conservation monitoring, ecosystem services estimations, and their association with emerging infectious diseases. 
    more » « less
  4. null (Ed.)
    Existing collaborations among public health practitioners, veterinarians, and ecologists do not sufficiently consider illegal wildlife trade in their surveillance, biosafety, and security (SB&S) efforts even though the risks to health and biodiversity from these threats are significant. We highlight multiple cases to illustrate the risks posed by existing gaps in understanding the intersectionality of the illegal wildlife trade and zoonotic disease transmission. We argue for more integrative science in support of decision-making using the One Health approach. Opportunities abound to apply transdisciplinary science to sustainable wildlife trade policy and programming, such as combining on-the-ground monitoring of health, environmental, and social conditions with an understanding of the operational and spatial dynamics of illicit wildlife trade. We advocate for (1) a surveillance sample management system for enhanced diagnostic efficiency in collaboration with diverse and local partners that can help establish new or link existing surveillance networks, outbreak analysis, and risk mitigation strategies; (2) novel analytical tools and decision support models that can enhance self-directed local livelihoods by addressing monitoring, detection, prevention, interdiction, and remediation; (3) enhanced capacity to promote joint SB&S efforts that can encourage improved human and animal health, timely reporting, emerging disease detection, and outbreak response; and, (4) enhanced monitoring of illicit wildlife trade and supply chains across the heterogeneous context within which they occur. By integrating more diverse scientific disciplines, and their respective scientists with indigenous people and local community insight and risk assessment data, we can help promote a more sustainable and equitable wildlife trade. 
    more » « less
  5. Abstract Understanding host immune function and ecoimmunology is increasingly important at a time when emerging infectious diseases (EIDs) threaten wildlife. One EID that has emerged and spread widely in recent years is chytridiomycosis, caused by the fungal pathogenBatrachochytrium dendrobatidis(Bd), which is implicated unprecedented amphibian declines around the world. The impacts ofBdhave been severe for many amphibian species, but some populations have exhibited signs of persistence, and even recovery, in some regions. Many mechanisms may underpin this pattern and amphibian immune responses are likely one key component. Although we have made great strides in understanding amphibian immunity, the complement system remains poorly understood. The complement system is a nonspecific, innate immune defense that is known to enhance other immune responses. Complement activation can occur by three different biochemical pathways and result in protective mechanisms, such as inflammation, opsonization, and pathogen lysis, thereby providing protection to the host. We currently lack an understanding of complement pathway activation for chytridiomycosis, but several studies have suggested that it may be a key part of an early and robust immune response that confers host resistance. Here, we review the available research on the complement system in general as well as amphibian complement responses toBdinfection. Additionally, we propose future research directions that will increase our understanding of the amphibian complement system and other immune responses toBd. Finally, we suggest how a deeper understanding of amphibian immunity could enhance the conservation and management of amphibian species that are threatened by chytridiomycosis. 
    more » « less