Abstract These notes were prepared for theLefschetz Preparatory School, a graduate summer course held in Krakow, May 6–10, 2024. They present the story of the algebraic Lefschetz properties from their origin in algebraic geometry to some recent developments in commutative algebra. The common thread of the notes is a bias towards topics surrounding the algebraic Lefschetz properties that have a topological flavor. These range from the Hard Lefschetz Theorem for cohomology rings to commutative algebraic analogues of these rings, namely artinian Gorenstein rings, and topologically motivated operations among such rings.
more »
« less
Lefschetz theorems in flat cohomology and applications
We prove a version of the Lefschetz hyperplane theorem for fppf cohomology with coefficients in any finite commutative group scheme over the ground field. As consequences, we establish new Lefschetz results for the Picard scheme.
more »
« less
- Award ID(s):
- 1840234
- PAR ID:
- 10610415
- Publisher / Repository:
- Compositio Mathematica
- Date Published:
- Journal Name:
- Compositio Mathematica
- Volume:
- 160
- Issue:
- 8
- ISSN:
- 0010-437X
- Page Range / eLocation ID:
- 1850 to 1870
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Given an involution on a rational homology 3-sphere Y with quotient the 3-sphere, we prove a formula for the Lefschetz num- ber of the map induced by this involution in the reduced mono- pole Floer homology. This formula is motivated by a variant of Witten’s conjecture relating the Donaldson and Seiberg–Witten invariants of 4-manifolds. A key ingredient is a skein-theoretic ar- gument, making use of an exact triangle in monopole Floer homol- ogy, that computes the Lefschetz number in terms of the Murasugi signature of the branch set and the sum of Frøyshov invariants as- sociated to spin structures on Y . We discuss various applications of our formula in gauge theory, knot theory, contact geometry, and 4-dimensional topology.more » « less
-
We produce simply-connected, minimal, symplectic Lefschetz fibrations realizing all the lattice points in the symplectic geography plane below the Noether line. This provides asymplecticextension of the classical works populating the complex geography plane with holomorphic Lefschetz fibrations. Our examples are obtained by rationally blowing down Lefschetz fibrations with clustered nodal fibers, the total spaces of which are potentially new homotopy elliptic surfaces. Similarly, clustering nodal fibers on higher genera Lefschetz fibrations on standard rational surfaces, we get rational blowdown configurations that yield new constructions of small symplectic exotic –manifolds. We present an example of a construction of a minimal symplectic exotic through this procedure applied to a genus– fibration.more » « less
-
We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2) that the partially wrapped Fukaya category of a Weinstein manifold with respect to a mostly Legendrian stop is generated by the cocores of the critical handles and the linking disks to the stop. We also prove (3) a ‘stop removal equals localization’ result, and (4) that the Fukaya–Seidel category of a Lefschetz fibration with Liouville fiber is generated by the Lefschetz thimbles. These results are derived from three main ingredients, also of independent use: (5) a Künneth formula (6) an exact triangle in the Fukaya category associated to wrapping a Lagrangian through a Legendrian stop at infinity and (7) a geometric criterion for when a pushforward functor between wrapped Fukaya categories of Liouville sectors is fully faithful.more » « less
-
We develop techniques to construct explicit symplectic Lefschetz fibrations over the2-sphere with any prescribed signature\sigmaand any spin type when\sigmais divisible by16. This solves a long-standing conjecture on the existence of such fibrations with positive signature. As applications, we produce symplectic4-manifolds that are homeomorphic but not diffeomorphic to connected sums ofS^2 \times S^2, with the smallest topology known to date, as well as larger examples as symplectic Lefschetz fibrations.more » « less
An official website of the United States government

