skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 14, 2026

Title: Uncovering Spatiotemporal Differences in Cortical Activity Corresponding to two Tasks Using Data-Driven ADASSO Algorithm
Identifying spatiotemporal differences in brain functional dynamics corresponding to two tasks is critical for understanding how specific neural processes contribute to distinct tasks or cognitive functions. Traditional methods rely on imposing assumptions and limits on the location and timing of activities, while machine-learning-based methods generally lack offering interpretable insights. This highlights the need for new data-driven approaches to capture spatial and temporal differences in brain activity between two tasks, while also providing interpretable explanations of the neural processes underlying these differences. In this work, we formulate the problem of finding the spatial and temporal differences in the dynamics of brain function corresponding to two motor imagery (MI) tasks (left hand movement vs right hand movement) as a discriminative discrete basis problem (DDBP). We apply the data-driven asymmetric discriminative associative algorithm (ADASSO) to EEG data collected during these tasks to uncover the key functional components of the brain’s functional dynamics that differentiate between them. Results suggest that hand movements are strongly associated with high confidence activation in the motor cortex, verifying the effectiveness of the ADASSO algorithm in identifying the location and timing of cortical activities that distinguish between the two task classes.  more » « less
Award ID(s):
2319518
PAR ID:
10610546
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-2052-6
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Location:
Houston, TX, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. In this study we propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix, and provides evidence of goal-specific brain connectivity patterns, which opens up potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand. 
    more » « less
  2. Brain-machine interfaces (BMIs) have become increasingly popular in restoring the lost motor function in individuals with disabilities. Several research studies suggest that the CNS may employ synergies or movement primitives to reduce the complexity of control rather than controlling each DoF independently, and the synergies can be used as an optimal control mechanism by the CNS in simplifying and achieving complex movements. Our group has previously demonstrated neural decoding of synergy-based hand movements and used synergies effectively in driving hand exoskeletons. In this study, ten healthy right-handed participants were asked to perform six types of hand grasps representative of the activities of daily living while their neural activities were recorded using electroencephalography (EEG). From half of the participants, hand kinematic synergies were derived, and a neural decoder was developed, based on the correlation between hand synergies and corresponding cortical activity, using multivariate linear regression. Using the synergies and the neural decoder derived from the first half of the participants and only cortical activities from the remaining half of the participants, their hand kinematics were reconstructed with an average accuracy above 70%. Potential applications of synergy-based BMIs for controlling assistive devices in individuals with upper limb motor deficits, implications of the results in individuals with stroke and the limitations of the study were discussed. 
    more » « less
  3. The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural and functional aspects of the brain, encompassing the ramifications of diseases and developmental processes. However, prevailing methodologies, often focusing on synchronous BOLD signals from functional MRI (fMRI), may not capture directional influences among brain regions and rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks via an ordinary differential equation (ODE) model, which characterizes spatial-temporal brain dynamics. Our framework is validated on several clinical phenotype prediction tasks using two independent publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods. 
    more » « less
  4. In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke. 
    more » « less
  5. Introduction The notion of a single localized store of word representations has become increasingly less plausible as evidence has accumulated for the widely distributed neural representation of wordform grounded in motor, perceptual, and conceptual processes. Here, we attempt to combine machine learning methods and neurobiological frameworks to propose a computational model of brain systems potentially responsible for wordform representation. We tested the hypothesis that the functional specialization of word representation in the brain is driven partly by computational optimization. This hypothesis directly addresses the unique problem of mapping sound and articulation vs. mapping sound and meaning. Results We found that artificial neural networks trained on the mapping between sound and articulation performed poorly in recognizing the mapping between sound and meaning and vice versa. Moreover, a network trained on both tasks simultaneously could not discover the features required for efficient mapping between sound and higher-level cognitive states compared to the other two models. Furthermore, these networks developed internal representations reflecting specialized task-optimized functions without explicit training. Discussion Together, these findings demonstrate that different task-directed representations lead to more focused responses and better performance of a machine or algorithm and, hypothetically, the brain. Thus, we imply that the functional specialization of word representation mirrors a computational optimization strategy given the nature of the tasks that the human brain faces. 
    more » « less