skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SafeZone: A Topologically-Aware Voronoi-Based Framework for Fast Collision-Free Cooperative 3d Printing
Abstract Swarm manufacturing (SM) is an emerging manufacturing paradigm that employs a heterogeneous swarm of robots to accomplish complex hybrid manufacturing tasks. Cooperative 3D Printing (C3DP), a special form of swarm manufacturing, uses multiple printers to print large-scale parts cooperatively and aims to tackle key challenges in the additive manufacturing industry, such as trade-offs among size, speed, quality, and cost. A fundamental challenge in C3DP is how to achieve collision-free, time-efficient printing when multiple printers operate in a shared workspace. This is a complex problem since the solution may depend on a myriad of factors, such as the number of printers, part geometry, printer positioning, mobility, and kinematics, or whether the printing path pre-determined. In this paper, we present SafeZone, a collision-free and scalable C3DP framework that aims to minimize printing time by considering both the geometry and topology (space-connectivity) of the resulting workspace when segmenting the part layer. To achieve this, we use a guided Voronoi tessellation that can only produce degree-3 partitions, which we show to have optimal scheduling properties based on the chromatic number of the resulting partition graph. The sites of the Voronoi tessellation are constrained to only lie on the boundary of their convex hull, thus facilitating collision-free operation in C3DP systems with robotic arms. We demonstrate through physical testing in a 4-printer scenario with SCARA arms that SafeZone can produce collision-free prints, resulting in a printing time reduction of 44.63% when compared to the single-printer scenario. Finally, we show how the partition created by our methodology has a printing time reduction of 22.83% when compared to a naive choice which does not consider workspace topology.  more » « less
Award ID(s):
2048182
PAR ID:
10610598
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8834-6
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Swarm manufacturing is an emerging manufacturing paradigm that employs a heterogeneous swarm of robots to accomplish complex hybrid manufacturing tasks. Cooperative 3D printing (C3DP), a specialized form of swarm manufacturing, enables multiple printers to collaboratively produce large-scale parts, addressing key tradeoffs in additive manufacturing, such as size, speed, quality, and cost. A fundamental challenge in C3DP is ensuring collision-free, time-optimal printing in a shared workspace. This is a complex problem that can be influenced by factors such as the number of printers, part geometry, printer positioning, mobility, and kinematics. In this article, we present SafeZone*, a collision-free and scalable C3DP framework that optimizes printing time by co-considering the geometry (area and shape) and topology (space-connectivity) of a shared workspace during layer partitioning. We first establish a conceptual framework to mathematically represent the topology of a layer through partition graphs. Then, we use a Voronoi tessellation within a constrained optimization framework to control the partition graph and minimize makespan. The Voronoi sites are associated with printer locations, allowing the framework to integrate physical constraints and facilitating solutions for systems with robotic manipulators. Physical testing in a four-printer scenario with robotic arms confirms that SafeZone* enables collision-free printing, resulting in a printing time reduction of 44.63% when compared to the single-printer scenario. Finally, numerical studies reveal trends in the optimal solutions concerning the chromatic number of their resulting partition graphs and the distribution of the printing areas among printers. 
    more » « less
  2. Abstract One of the major challenges in 3D printing is its lack of scalability both in size and speed, which directly impacts its economic feasibility for large-scale industrial applications. Cooperative 3D printing (C3DP) is an emerging paradigm that aims to address these issues by employing multiple mobile printers that work in parallel. However, a crucial step in enabling C3DP is the development of a collision-free communication framework between the printers during the manufacturing process. Many C3DP systems found in the literature develop solutions for collision-free printing that are specific to the setup being used, thus not allowing the solution to be transferred to other similar systems. In this paper, we formulate a general framework that generates four distinct collision-free communication strategies to enable arm-arm coordination for C3DP using robotic manipulators. We considered collisions both between the arms with themselves and between the arms and the part being printed. The strategies are general in that they are agnostic to the number of printers, their kinematics, and their spatial configurations in the manufacturing environment. We conducted a study of the four strategies using a two-printer scenario and then physically validated them with four test cases of varying geometries. The results show that the strategies successfully produce printed parts while being collision-free. The makespan reduction using our strategies when compared to a single printer varied from 20% to 42% depending on the strategy used. Finally, we discuss the limitations of the framework, as well as future research directions. 
    more » « less
  3. Cooperative 3D Printing (C3DP), an additive manufacturing platform consisting of a swarm of mobile printing robots, is an emerging technology designed to address the size and printing speed limitations of conventional, gantry-based 3D printers. A typical C3DP process often involves several interconnected stages, including project/job partitioning, job placement on the floor, task scheduling, path planning, and motion planning. In our previous work on project partitioning, we presented a Z-Chunker, which vertically divides a tall print project into multiple jobs to overcome the physical constraints of printers in the Z direction, and an XY Chunker, to partition jobs into discrete chunks, which are allocated to individual printing robots for parallel printing. These geometry partitioning algorithms determine what is to be printed, but other information, such as when, where, and in what order chunks should be printed, is required to carry out the print physically. This paper introduces the first Job Placement Optimizer for C3DP based on Dynamic Dependency List schedule assignment and Conflict-Based Search path planning. Our algorithm determines the optimal locations for all jobs and chunks (i.e., subtasks of a job) on the factory floor to minimize the makespan for C3DP. To validate the proposed approach, we conduct three case studies: a simple geometry with homogeneous jobs in the Z direction and two complex geometries (one with moderate complexity and one relatively more complex) with non-homogeneous jobs in the Z direction. We also performed simulations to understand the impact of other factors, such as the number of robots, the number of jobs, chunking orientation, and the heterogeneity of prints (e.g., when chunks are different in size and materials), on the effectiveness of this placement optimizer. 
    more » « less
  4. null (Ed.)
    Abstract While three-dimensional (3D) printing has been making significant strides over the past decades, it still trails behind mainstream manufacturing due to its lack of scalability in both print size and print speed. Cooperative 3D printing (C3DP) is an emerging technology that holds the promise to mitigate both of these issues by having a swarm of printhead-carrying mobile robots working together to finish a single print job cooperatively. In our previous work, we have developed a chunk-based printing strategy to enable the cooperative 3D printing with two fused deposition modeling (FDM) mobile 3D printers, which allows each of them to print one chunk at a time without interfering with the other and the printed part. In this paper, we present a novel method in discretizing the continuous 3D printing process, where the desired part is discretized into chunks, resulting in multi-stage 3D printing process. In addition, the key contribution of this study is the first working scaling strategy for cooperative 3D printing based on simple heuristics, called scalable parallel arrays of robots for 3DP (SPAR3), which enables many mobile 3D printers to work together to reduce the total printing time for large prints. In order to evaluate the performance of the printing strategy, a framework is developed based on directed dependency tree (DDT), which provides a mathematical and graphical description of dependency relationships and sequence of printing tasks. The graph-based framework can be used to estimate the total print time for a given print strategy. Along with the time evaluation metric, the developed framework provides us with a mathematical representation of geometric constraints that are temporospatially dynamic and need to be satisfied in order to achieve collision-free printing for any C3DP strategy. The DDT-based evaluation framework is then used to evaluate the proposed SPAR3 strategy. The results validate the SPAR3 as a collision-free strategy that can significantly shorten the printing time (about 11 times faster with 16 robots for the demonstrated examples) in comparison with the traditional 3D printing with single printhead. 
    more » « less
  5. null (Ed.)
    Cooperative 3D printing (C3DP) is a novel approach to additive manufacturing, where multiple printhead-carrying mobile robots work together cooperatively to print a desired part. The core of C3DP is the chunk-based printing strategy in which the desired part is first split into smaller chunks, and then the chunks are assigned to individual printing robots. These robots will work on the chunks simultaneously and in a scheduled sequence until the entire part is complete. Though promising, C3DP lacks proper framework that enables automatic chunking and scheduling given the available number of robots. In this study, we develop a computational framework that can automatically generate print schedule for specified number of chunks. The framework contains 1) a random generator that creates random print schedule using adjacency matrix which represents directed dependency tree (DDT) structure of chunks; 2) a set of geometric constraints against which the randomly generated schedules will be checked for validation; and 3) a printing time evaluation metric for comparing the performance of all valid schedules. With the developed framework, we present a case study by printing a large rectangular plate which has dimensions beyond what traditional desktop printers can print. The study showcases that our computation framework can successfully generate a variety of scheduling strategies for collision-free C3DP without any human interventions. 
    more » « less