skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pre‐existing phytoplankton biomass concentrations shape coastal plankton response to fire‐generated ash leachate
Abstract Climate‐driven warming is projected to intensify wildfires, increasing their frequency and severity globally. Wildfires are an increasingly significant source of atmospheric deposition, delivering nutrients, organic matter, and trace metals to coastal and open ocean waters. These inputs have the potential to fertilize or inhibit microbial growth, yet their ecological impacts remain poorly understood. This study examines how ash leachate, derived from the 2017 Thomas Fire in California and lab‐produced ash from Oregon vegetation, affects coastal plankton communities. Shipboard experiments off the California coast examined how pre‐existing plankton biomass concentrations mediate responses to ash leachates. We found that ash leachate contained dissolved organic matter (DOM) that significantly increased bacterioplankton specific growth rates and DOM remineralization rates but had a negligible effect on bacterioplankton growth efficiency, suggesting low DOM bioavailability. Furthermore, ash‐derived DOM had a higher potential to accumulate in high biomass water, where pre‐existing DOM substrates may better support bacterial metabolism. Ash leachate had a neutral to negative effect on phytoplankton division rates and decreased microzooplankton grazing rates, particularly in low biomass water, leading to increased phytoplankton accumulation. Nanoeukaryotes accumulated in low biomass water, whereas picoeukaryotes andSynechococcusaccumulated in high biomass water. Our findings suggest that the influence of ash deposition on DOM cycling, phytoplankton accumulation, and broader marine food web dynamics depends on pre‐existing biomass levels. Understanding these interactions is critical for predicting the biogeochemical consequences of increasing wildfire activity on marine ecosystems.  more » « less
Award ID(s):
2049656 2425417
PAR ID:
10610875
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
70
Issue:
7
ISSN:
0024-3590
Format(s):
Medium: X Size: p. 1883-1900
Size(s):
p. 1883-1900
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The oceans teem with heterotrophic bacterioplankton that play an appreciable role in the uptake of dissolved organic carbon (DOC) derived from phytoplankton net primary production (NPP). As such, bacterioplankton carbon demand (BCD), or gross heterotrophic production, represents a major carbon pathway that influences the seasonal accumulation of DOC in the surface ocean and, subsequently, the potential vertical or horizontal export of seasonally accumulated DOC. Here, we examine the contributions of bacterioplankton and DOM to ecological and biogeochemical carbon flow pathways, including those of the microbial loop and the biological carbon pump, in the Western North Atlantic Ocean (∼39–54°N along ∼40°W) over a composite annual phytoplankton bloom cycle. Combining field observations with data collected from corresponding DOC remineralization experiments, we estimate the efficiency at which bacterioplankton utilize DOC, demonstrate seasonality in the fraction of NPP that supports BCD, and provide evidence for shifts in the bioavailability and persistence of the seasonally accumulated DOC. Our results indicate that while the portion of DOC flux through bacterioplankton relative to NPP increased as seasons transitioned from high to low productivity, there was a fraction of the DOM production that accumulated and persisted. This persistent DOM is potentially an important pool of organic carbon available for export to the deep ocean via convective mixing, thus representing an important export term of the biological carbon pump. 
    more » « less
  2. Abstract Picocyanobacteria make up half of the ocean’s primary production, and they are subjected to frequent viral infection. Viral lysis of picocyanobacteria is a major driving force converting biologically fixed carbon into dissolved organic carbon (DOC). Viral-induced dissolved organic matter (vDOM) released from picocyanobacteria provides complex organic matter to bacterioplankton in the marine ecosystem. In order to understand how picocyanobacterial vDOM are transformed by bacteria and the impact of this process on bacterial community structure, viral lysate of picocyanobacteria was incubated with coastal seawater for 90 days. The transformation of vDOM was analyzed by ultrahigh-resolution mass spectrometry and the shift of bacterial populations analyzed using high-throughput sequencing technology. Addition of picocyanobacterial vDOM introduced abundant nitrogen components into the coastal water, which were largely degraded during the 90 days’ incubation period. However, some DOM signatures were accumulated and the total assigned formulae number increased over time. In contrast to the control (no addition of vDOM), bacterial community enriched with vDOM changed markedly with increased biodiversity indices. The network analysis showed that key bacterial species formed complex relationship with vDOM components, suggesting the potential correspondence between bacterial populations and DOM molecules. We demonstrate that coastal bacterioplankton are able to quickly utilize and transform lysis products of picocyanobacteria, meanwhile, bacterial community varies with changing chemodiverisity of DOM. vDOM released from picocyanobacteria generated a complex labile DOM pool, which was converted to a rather stable DOM pool after microbial processing in the time frame of days to weeks. 
    more » « less
  3. Beisner, Beatrix E (Ed.)
    Abstract Within aquatic ecosystems, heterotrophic, mixotrophic and autotrophic plankton are entangled in a complex network of competitive, predatory and mutualistic interactions. “Browning,” the increase of colored dissolved organic matter (CDOM) from terrestrial catchments, can affect this network of interactions by simultaneously decreasing light availability and increasing organic carbon and nutrients supplies. Here, we introduce a conceptual, process-based numerical model to investigate the effects of browning on a microbial food web consisting of heterotrophic bacterioplankton, bacterivorous phago-mixoplankton, autotrophic phytoplankton and the resources light, inorganic phosphorus and DOM. Additionally, we explore how the investment in autotrophic vs. phagotrophic resource acquisition influences mixoplankton performance. Several model predictions are in broad agreement with empirical observations under increasing CDOM supply, including increased bacterial biomass and inorganic phosphorous, decreased light penetration, the potential for a unimodal phytoplankton biomass response and a local minimum in mixoplankton biomass. Our results also suggest that mixoplankton with a high investment in phototrophy perform best in many conditions but that phosphorous acquisition via prey is crucial under high light-low nutrient conditions. Overall, our model analyses suggest that responses to altered CDOM supply are largely determined by systematic changes in the relative importance of nutrient vs. energy limitation of each plankton group. 
    more » « less
  4. Transforming the organic fraction of municipal solid waste (OFMSW) into biochar to reduce fugitive landfill emissions and control organic micropollutants (OMP) during landfill leachate treatment could provide a new circular economy organics diversion approach. However, research on landfill leachate treatment under consistent, representative conditions with biochar derived from the wide range of OFMSW components is needed. Further, the competitive nature of leachate dissolved organic matter (DOM) for biochar adsorption sites has not been examined. To this end, biochars were produced from seven diverse OFMSW types and batch tested using two representative organic contaminants. To evaluate leachate DOM impact on OMP removal and fouling mitigation with biochar enhancement methods, experiments were performed with three background matrices (deionized water, synthetic leachate, real leachate) and two enhancement methods (ash-pretreatment, double-heating). Since evaluating all possible OFMSW feedstock combinations is infeasible, fundamental relationships between individual feedstocks and biochar properties were evaluated. Overall, biochar performance varied substantially; the dose to achieve a given target removal spanned an order of magnitude between the OFMSW feedstocks. Also, the presence of leachate DOM more negatively impacted the performance of all biochars relative to the benchmark adsorbent activated carbon. Finally, the enhancement methods altered biochar pore structure by increasing micropore and slightly decreasing non-micropore surface areas, resulting in improved adsorption capacity (by 23 to 93%). By providing the basis for a low-cost, enhanced leachate treatment method, this study could incentivize a novel organics diversion approach that reduces climate change impacts, harvests energy from waste, and reduces landfill air emissions. 
    more » « less
  5. Beisner, Beatrix E (Ed.)
    Abstract Shifts in the composition of terrestrial plant communities could have significant effects on freshwater zooplankton due to changes in the quality of inputs of terrestrially derived dissolved organic matter (DOM). Leachate from native red maple (RM) and invasive Amur honeysuckle (AH) were used to explore the effects of DOM source on survival and growth of juvenile Daphnia ambigua. Prior research with both terrestrial and aquatic organisms indicates that AH-derived DOM has negative effects. Comparing bioassays in the presence and absence of algae with no additional DOM, RM- or AH-derived DOM, RM had stronger negative effects on both Daphnia survival and growth while AH only decreased growth. The negative effects seen in the presence and absence of algae provided evidence for both indirect and direct effects due to phytotoxicity and plant secondary compounds, respectively. DOM source may play a key role in regulating consumers in aquatic ecosystems. 
    more » « less